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Introduction
Camera networks dedicated to observing fireball phe-
nomena allow the bright flight trajectory of mete-
oroids to be triangulated. The evolution of a meteoroid
throughout its flight can be modelled by a set of simple
dynamic equations (after [1]):
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where ρa, g and γe are the local atmospheric density,
gravity and flight angle from horizontal respectively,
the shape density coefficient κ = cdA0
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(cd being the
drag coefficient and A0 the shape parameter) and the
ablation coefficient σ = ch

H∗cd
(ch is the coefficient of

heat and H∗ the enthalpy of vaporisation).
In order to gain an understanding of the unknown

variables, typical methods perform a least squares
analysis and residuals are used as an indicator of over-
all model errors (eg. [1]). A more robust understand-
ing of errors introduced by the model itself (1) as well
as errors in observations can be examined by using
tracking algorithms. The estimators to be discussed
include the Extended Kalman Filter (EKF) as origi-
nally proposed by Sansom et al. [2]; the Unscented
Kalman filter (UKF) and its inclusion in an Interac-
tive Multiple Model estimator (IMM); and Sequential
Importance Sampling Particle Filter (SISPF).

Tracking Algorithms
The state of a meteoroid at any discrete time step,
k, may be represented by a state vector xk =
[position (l), velocity (v), mass (m)] and an associ-
ated covariance matrix, Pk. Although brightness has
not been incorporated at this stage, it can simply be
included as an additional state parameter.

Tracking algorithms typically perform a prediction
at time k using the system equations and includes a
process noise wk ∼ N (0,Qk). This is followed by an

update where the observations (including observation
noise nk ∼ N (0,Rk)) are compared to the model
prediction.

The non-linear system (1) requires non-linear esti-
mations algorithms. An EKF predicts the future state
covariance, Pk+1, by using an approximate, linearised
form of (1) for the state transition matrix [2]. An
UKF uses a set of sample points to represent the mean
state and covariance of a Gaussian distribution. These
are individually propagated through (1) and the mean
state and covariance recalculated. Although fragmen-
tation is not explicitly included in the model, sudden
increases in mass loss are incorporated by the process
noise covariance, Qk, to a certain degree. By running
two simultaneous UKFs in an IMM, with different val-
ues for mass in Qk, fragmentation events can be iden-
tified. All Kalman Filters require initial values for state
parameters, κ and σ. This requires a preceding optimi-
sation step using the least squares method (eg. [2]).

A statistical analysis that includes determination of
likely starting parameters can be performed using the
iterative Monte Carlo approach of a SISPF. A set of
particles are initiated with a range of values for mass
and velocity as well as for κ and σ (which are included
as state parameters in xk). Each particle is propagated
using (1) and its likelihood calculated based on obser-
vation values. A new set of particles are resampled
from this pool resulting in a robust final estimate.

Conclusion
This presentation will outline the contrasting results of
these different tracking methodologies using the flight
trajectory of the Bunburra Rockhole meteoroid and as-
sess the advantages and disadvantages of each.
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