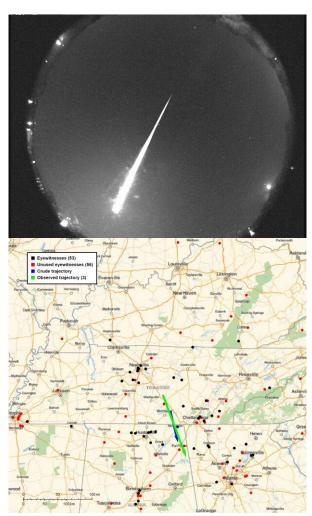
Comparing eyewitness-derived trajectories of bright meteors to ground truth data

D. E. Moser

Jacobs, ESSSA Group, Marshall Space Flight Center, Meteoroid Environment Office, EV44 Natural Environments Branch, Huntsville, Alabama 35812 USA (danielle.e.moser@nasa.gov)

The NASA Meteoroid Environment Office (MEO) is the only US government agency tasked with analyzing meteors of public interest. When queried about a meteor observed over the United States, the MEO must respond with a characterization of the trajectory, orbit, and size within a few hours. Using observations from meteor networks like the NASA All Sky Fireball Network [1] or the Southern Ontario Meteor Network [2], such a characterization is often easy. If found, casual recordings from the public and stationary web cameras can be used to roughly analyze a meteor if the camera's location can be identified and its imagery calibrated. This technique was used with great success in the analysis of the Chelyabinsk meteorite fall [3].

But if the event is outside meteor network coverage, if an insufficient number of videos are found, or if the imagery cannot be geolocated or calibrated, a timely assessment can be difficult if not impossible. In this situation, visual reports made by eyewitnesses may be the only resource available. This has led to the development of a tool to quickly calculate crude meteor trajectories from eyewitness reports made to the American Meteor Society [4]. The output is illustrated in Figure 1. A description of the tool, example case studies, and a comparison to ground truth data observed by the NASA All Sky Fireball Network will be presented.


References

[1] Cooke, W.J. and Moser, D.E., *Proceedings of the IMC, Sibiu, Romania, 15-18 September 2011*, pp. 9-12, 2012.

[2] Weryk, R.J., Brown, P.G., Domokos, A., Edwards, W. N., Krzeminski, Z., Nudds, S.H., and Welch, D.L., *Earth, Moon, and Planets*, Vol. 102, pp. 241-246, 2008.

[3] Borovička, J., Spurný, P., Brown, P., Wiegert, P., Kalenda, P., Clark, D., and Shrbený, L., *Nature*, Vol. 503, pp. 235-237, 2013.

[4] Hankey, M., Perlerin, V., Lunsford, R., and Meisel, D., *Proceedings of the IMC, Poznan, Poland, 22-25 August 2013*, pp. 115-119, 2014.

Fig 1 (top) Meteor observation by the NASA All Sky Fireball Network. (bottom) Ground track of the crude eyewitness-derived trajectory compared to the observed ground track.