Optical Flash Expansion Geometry in Hypervelocity Impact Events

INVESTIGATION OF IMPACT FLASH POLARIZATION EFFECT

Yayu Monica Hew, Dr. Sigrid Close, Dr. Ivan Linscott June 6th, 2016

ice Environment and Satellite System

Source: NASA, Near Earth Impact.

Fine grain sand 0.0161 g @ 4.65 km/s impacting a differentially charged target $\sim \pm 145V$

Hypervelocity Impact Phenomenon

Space Environment and Satellite Systems

4

Radiation Mechanisms in Plasma

Multi-Physics Sensor Suite

7

Impact Flash Spatial Measurement

Stanford University

8

Space Environment and Satellite Systems

SES

AVGR Optical Expansion Polarization

CCLDAS Dust Accelerator Impact Flash

Stanford University

Space Environment and Satellite Systems

10

- Potential <u>Polarization effect</u> observed in impact events at both dust accelerator and light gas gun facilities
- Impact Plasma Flash can be used as a diagnostic tool for hypervelocity impactors in space

Acknowledgement

12

- SESS impact team members: Dr. Ashish Goel, Mr. Andrew Nuttall, Mr. Paul Tarantino, and Dr. Dave Lauben
- Help and support from staff members at Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS), CO, USA.
- Help and support from staff members at NASA Ames Vertical Gun Range <u>(AVGR)</u>, CA, USA.
- Support from <u>U.S. Department of Energy, Career Award</u>
- Student fellowship support from <u>Stanford Graduate Fellowship</u>
- Student travel support from <u>The Society of Taiwan Women in</u> <u>Science and Technology (TWiST, 台灣女科技人學會)</u>

WHAAAA?!?!

A

Space Environment and Satellite Systems

SESS

The Society of Taiwan Women in Science and **Technology**

Ongoing Work : Temperature Measurement

Stanford University

Space Environment and Satellite Systems

SESS

14

¹⁵ Hypervelocity Impact Plasma Proposed Model

Source: N. Lee, PhD thesis (2013)

¹⁶ Hypervelocity Impact Facilities

Source: N. Lee, PhD thesis (2013)

SESS

Polarization Effect

17

Stanford University

Space Environment and Satellite Systems

Stanford University

Space Environment and Satellite Systems

SESS

32

¹⁹ **Different Bias Types**

²⁰ Measured Emission Radiation Evolution

Hypervelocity Impact Radiation Model

Space Environment and Satellite Systems

- Non-ideal / Collisional
- LTE
- Optically thick
- Ideal / Collisionless
- LTE breakdown
- Optically thin

²² Optical Sensor Setup for AVGR

NGDC Database

NGDC database

- NOAA Anomaly database for US satellites in MEO and GEO orbits
- ~ 5000 satellite anomalies 1972 1992
- Gives local time at impact, solar longitude etc.
- Gives orbit type but not orbital parameters

Anomaly Diagnosis

Electron Caused EM Pulse (Deep Dielectric Charging) -490

Electrostatic Discharge (Surface Charging) – 1072

Single Event Upset - 822

Radio Frequency Interference – 8

Unknown - 2587

Goel 2015.

AVGR : Floating Target

AVGR : Floating Target

²⁶ Biased to Negative 50 V

²⁷ Grounded Target

S.A.

28 **Positively Biased**

