Popova Olga

Institute for Dynamics of Geospheres Russian Academy of Science

Modeling of the meteoroids entry

Meteoroids 2016
June 8, 2016

Meteoroid in the atmosphere: Ablation and Fragmentation

Ablation rate determines

- deposition of mass, momentum, energy into the atmosphere,

$$
\begin{gathered}
\text { sphere, } \quad \alpha=-\frac{\beta}{\mu V} \frac{d M}{d t} \\
I=-\tau\left(\frac{V^{2}}{2} \frac{d M}{d t}+M V \frac{d V}{d t}\right)
\end{gathered}
$$

 flight, meteoroid properties and fragmentation

I - light intensity
α - linear electron density
τ, β - luminous and ionizing efficiencies,
μ - average mass
$\mu \quad$ of ablated atom

Meteoroids in the size range $10^{-4} \mathrm{~cm}<\mathrm{R}<100-1000 \mathrm{~m}$ are ablated and could be fragmented

$\mathrm{R} \sim \mathrm{f}(\mathrm{V}, \mathrm{a}$, material/structure $)$
< $\mathrm{H}>$ ~ $130-20 \mathrm{~km}$
(extreme cases - up to 200 km atmospheric density- $10^{-13} 10^{-3} \mathrm{~g} / \mathrm{cm}^{3}$)

Free-molecular

- evaporated atoms
$\overrightarrow{\mathrm{v}} \sim \overrightarrow{\mathrm{v}}\left(\mathrm{T}_{\text {surface }}\right) \ll \overrightarrow{\mathrm{V}}$

Free-molecular \square transitional \square continuous
Heat transfer from air flux to meteoroid:

- direct impact of air particles in free molecular regime
- combination of convection and radiation
(in transitional and continuous regimes)
Large meteoroids:
main ablation occurs at middle-low altitudesin continuous flow conditions (shock wave formation)
Ablation equation $\frac{d M}{d t}=-C_{h}\left(\frac{S \rho V^{3}}{2 Q}\right)$
C_{h} - dimensionless heat transfer coefficient
Q - effective heat of ablation
$\mathrm{C}_{\mathrm{h}}=\mathrm{C}_{\mathrm{h}}(\mathrm{R}, \mathrm{V}, \mathrm{H}$, material $)$ Air

Non-thermal mass loss

Usually assumed start of ablation 90-130
km ($\mathrm{T}_{\text {surface }}-2000 \mathrm{~K}$) - altitude of intensive evaporation

Above ($\sim 110-130 \mathrm{~km}$) direct impacts of air particles:

- heating of meteoroid
- sputtering of meteoroid surface

- sputtered and reflected particles

Sputtering

-was supposed as explanation of high altitude (above 130 km) ionization and luminosity (Brosch et al, 2001)
-occurs for high velocity meteors ($\mathrm{V}>30 \mathrm{~km} / \mathrm{s}$)(Popova et al, 2004)
-causes mass losses for high-velocity meteors (up to 35% for $\mathrm{M} \sim 10^{-16} \mathrm{~kg}$);
(Vondrak et al 2008)
Sputtered particles
carry out about 10-20\% of incoming energy (Popova et al, 2004)

Interaction of sputtered atoms with atmosphere

Formation of disturbed area at high

 altitudes (Vinkovic, 2004)Oxygen radiation (777 nm) (main component at high altitudes)

- DSMC modeling, V=70 km/s
- only elastic collisions are considered, no radiation

- model brightness changes with altitude similarly to observations
- bigger meteoroid size than
photometric estimate
- only first collisions considered
- uncertainties in cross-sections and sputtering efficiencies
- modeling of radiation is not complete

Free molecule regime

Solution of equations of meteoroid flight under various assumptions
(about emissivity, evaporation rate etc.)

- to determine fate of incoming material in the Earth atmosphere, to predict mass/energy deposition at different H
(Flynn,1989; Love and Brownlee 1991, Hunten 1997, Plane et al 2015 and others)
- to predict ionization (for example Close et al., Hunt et al. 2004;Cervera\&Elford, 2004)
- to consider meteors in different planets' atmospheres
(Moses 1992; Moses et al,2000; Pesnel et al.,2002;2004 and others)
- to reproduce light curves/deceleration (Campbell-Brown\&Koschny,2004; Campbell-Brown et al 2013 and others)
- to estimate masses and densities of meteoroids (Kikwaya et al., 2010; Close et al. 2012;Stokan\&Campbell-Brown 2015 etc);
Free molecule regime $\mathrm{Ch}=1$ and - know something about ablation rate
What is known about state of ablated material?

Ionization:

- formation of initial radius (Jones, 1995)
- head echo formation
(Jones et al., 1998; Close 2004,2005 etc)
-- formation of non-specular meteor trails
(Dyrud et al.2005, 2008)

Radiation:

no models, which describe the conditions in luminous area (T, density) and allow to predict spectrum

Free molecule regime

Luminous efficiencies by different authors

Luminous and ionization efficiencies (used for masses estimates) large scatter

- estimates based on collisions consideration,
- interpretation of observational data,
- data on artificial meteors;
- often are extrapolated from assumed range

Ionization and luminous efficiency

Weryk\&Brown 2013:

- β following Jones (1997)
- the assumed composition greatly affects the result

Simultaneous radar and optical :

$M \sim 10^{-2} 10^{-5} \mathrm{~g}, \quad \mathrm{q} / \mathrm{l} \leftrightarrows \beta / \tau$
$\tau=f(\mathrm{~V})$:

- may be dependent on M,
- dependent on composition and spectra

Simultaneous radar and optical
observations (Campbell-Brown et al 2012): 4 meteors:
$\mathrm{H} \sim 90-100 \mathrm{~km}, \mathrm{~V} \sim 25-40 \mathrm{~km} / \mathrm{s} ; \mathrm{M} \sim 10^{-3} \mathrm{~g}$ Mass uncertainty

- about an order of magnitude

Interpretation of observation - model dependent (Bello-Rubio et al 2002); Besides, observations - fragmentation evidences

Dustball model (Hawkes and Jones, 1975)
cometary meteoroid consists of grains (with high boiling T)
connected by some glue (low T).
Luminosity - by ablating grains, grains may be released before H_{b} for small particles. Grain mass - based on analyses of 108 meteor flares by Simonenko(1968) $\sim 10^{-6} \mathrm{~g}$

Model of ablation of faint meteors (Campbell-Brown and Koschny, 2004) $\mathrm{M} \sim 10^{-6}-410^{-2} \mathrm{~g}$ ($\mathrm{R} \sim 0.01-0.2 \mathrm{~cm}$), radar and video observations release of grains when reached some $T_{\text {surface }}$ typically grains are released close to the onset of luminosity Grain distribution is determined - grain masses $10^{-4} 10^{-8} \mathrm{~g}$

Quasi-continuous fragmentation (Babadzhanov 2002 and references there) gradual release of the smallest fragments from the surface and their subsequent evaporation $\mathrm{M}>10^{-2} \mathrm{~g} ; 111$ of sample of 197 are fitted by QCF (44\%)
Different mechanisms (detachment of fragments (husking); thermodestruction and blowing off surface layer; the ejection of heated surface due to fast evaporation of volatiles)

Thermal erosion model (QCF type) (Borovicka et al.2007) - Draconids, small grains continuously detach from the surface, separation continued during the first half of meteor trajectories $\mathrm{M} \sim 10^{-3}-10 \mathrm{~g}$, grain masses-10-6 $10^{-7} \mathrm{~g}, \mathrm{Q}_{\text {erosion }} \sim 0.03-0.06 \mathrm{Q}_{\text {evap }}$

High resolution modeling of meteoroid ablation
 amounts of wake and fragmentation.

- to fit light curves/deceleration
- the wakes predicted by each model were compared to the wakes measured

Both models produced satisfactory fits to light/deceleration, but failed to predict brightness profiles - both predict far more wake than is seen.

Different type of fragmentation? Not fragmentation but differential ablation?

How often is fragmentation in optical meteors?

Optical faint meteors ($\mathrm{M} \sim 10^{-7} 10^{-4} \mathrm{~kg}$) Subasinghe et al. 2016 Canadian Automated Meteor Observatory

- ~90\% of meteors - some form of fragmentation

1496 high-resolution meteors:
1296 meteors - having distinct trails (>190 m);
135 meteors - short trails(<90 m);
65 meteors - gross fragmentation.

- most meteor light curves are symmetric - light-curve shape is not an indication of fragility or fragmentation behavior
- dynamically asteroidal meteors fragment as often as dynamically cometary
-proportions are almost equal: fragmentation is not an indicator of the object's origin

9 meteors ($\mathrm{M}<10^{-4} \mathrm{~kg}$) (Stokan\&Campbell-Brown 2014)

- significant transverse motion, U~100 m/s
(aerodynamic loading - U~1m/s)
- mechanism of fragment spreading are poorly known -
- meteoroid strengths of the order 10^{6} Pa were derived
(a) $0.02 \mathrm{~s}, 102.0 \mathrm{~km}$

Air beam model

formation of a vapor cloud around fast meteor - in the framework of the air beam model

- for vapor -

hydrodynamic description
- for air - beam of air molecules with flux $\rho_{\mathrm{a}} \mathrm{V}^{3} / 2$
- effective absorption coefficient for air molecules energy transfer to vapor

$$
\mathbf{k}=\left(\mathbf{n} \ell_{\mathrm{a}} \rho\right)^{-1}
$$

where - free path length of air in the vapor, ρ - vapor density ($\left.\sim 10^{7} \mathrm{~cm}^{2} / \mathrm{g}\right)$, $n \sim 10 \ell_{\mathbf{a}}$

The energy transfer during the penetration of the air into the layer of evaporated material could be described similar to radiative transfer assuming some effective mass absorption coefficient

Vapor cloud is formed around meteor body

Vapor cloud parameters

$\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$

Vapor cloud and comparison with observations

- vapor T behavior with R, V, H do not contradict to spectra changes with H (Abe et al. 2000)
- presence of high temperature component in both cases (MgII, Call, Sill, HI, Fell, CrII, OI) with T~10000 K (Borovička et al, 1999; Borovička and Jenniskens, 2000)
- radiative area diameter essentially exceeds body size
- vapor density estimates are close
- $\left(10^{-5}-10^{-10} \mathrm{~g} / \mathrm{cm}^{3}\right)$ Spectra from vapor layers of equal thickness
 thin - close to meteor head thick - farther from meteor head

But:

- only vapor radiation considered whereas $2 / 3$ radiation in observations belongs to air
- temperature in model seems too high - we don't taken in to account nonelastic processes in air-vapor collisions

DSMC modeling (Boyd, 2000)

Translational temperature field no ablation (a) with ablation (b)

Number density in front of the body

Effect of mass transfer on heat transfer and drag in rarefied flows

- Air-beam model results are in agreement (only $70 \mathrm{~km} / \mathrm{s}$ given)

Shape and size of luminous area in meteors

Attempts to measure - since 1960th
Width:
1-3 m (up to 9 m) at altitudes $90-110 \mathrm{~km}$, optical meteors $+5+10$; radar meteors (ion radius)
Stokan et al (2013): 30 meteors; $\sim+3, m \sim 10^{-4} \mathrm{~kg}$, exposure time $10^{-3} \mathrm{~s}$

-changes with distance from the head

- decreases with atmosphere free path length
- peak values - up to 40-100 m (above 105 km), 10-20 m below
- difference with other surveys: -camera spectral response/sensitivity?,
- different populations (higher V)?

Shape and size of luminouse area in meteors

Length: 50-150 m, up to 500-1900 m, different types (BabadzhanoveKramer 1968, Fisher et al 2000)
Stokan \&Campbell-Brown 2015: $\quad 100-250 \mathrm{~m}$ observed 9 non-fragmenting meteors

- fragmentation influence?
- absence of inelastic losses, cross sections could be different?
- other ablation coefficient, losses on heating\&re-readiation etc?

Important to compare with other observations in similar conditions - H,V, M
(a) 1

(a) Light curve

The same M, ρ - different model parameters:

- energy loss on meteoroid heating
- different vapor pressure dependences
- C_{h} with screening effects
- luminous efficiency is the same ©

Continuouse flow regime

Large meteoroids (> cm-sized):

ablation occurs at middle-low altitudes- shock wave formation
Main considered ablation process - evaporation Ablation equation

$$
\frac{d M}{d t}=-C h\left(\frac{S \rho V^{3}}{2 Q}\right)
$$

$\mathrm{C}_{\mathrm{h}}=\mathrm{C}_{\mathrm{h}}(\mathrm{R}, \mathrm{V}, \mathrm{H}$, material $)$ - heat transfer coefficient;
Q - effective heat of ablation
C_{h} - sum of convective and radiative coefficients;

$$
C_{h}=C_{h}(R, V, H)
$$

Convective heat transfer - is more important at high H , smaller sizes R and low V ; radiative - at low H, larger R, higher V.

Estimates of C_{h} :

- demonstrate wide dispersion, -are often extrapolated out of the range of initially obtained approximations;
- have different restrictions

Modeling of meteoroid passage

- fitting of observational data

 (deceleration and/or light curves) and determination meteoroid parameters (ablation coefficient, amount of mass loss, fragmentation points etc): grossfragmentation model (Ceplecha et al, 1993), FM modell (Ceplecha and ReVelle 2005)

- application of standard equations for large meteoroids entry, reproduction of dynamics and/or radiations for different bolides
(often supplemented by different fragmentation models) (Baldwin\&Sheaffer, 1971; ReVelle, 1978;1980;Borovicka et al.,1998; Nemtchinov et al, 1997; ReVelle 2002; ReVelle\&Ceplecha,2002 and others)
-hydrodynamical models, describing the entry of the meteoroid, including evolution of material (Ahrens et al, 1994; Boslough et al, 1994; Svetsov et al, 1995; Ivanov et al, 1992; Shuvalov\&Artemieva, 2002 and others); mainly for large bodies $D>10-30 \mathrm{~m}$

Luminous efficiencies

Luminous efficiency from AP model Golub et al 1997;Borovicka et al, 1998

Luminous efficiencies - uncertainty; often are extrapolated from initially assumed range

Obtained from:

- interpretation of observational data

Ceplecha and ReVelle 2005: $\tau=\tau\left(m, \nu, \rho_{\text {air }} / \rho_{\text {airmaxight }}\right)$ $0.2-10 \%$ for PN, EN bolides

- data on artificial meteors (gram-sized, $\mathrm{V} \sim 10-16 \mathrm{~km} / \mathrm{s}$ Ayers et al 1968);
- models

Integral luminous efficiency $\eta=E_{r} / E_{k}$

$$
E_{r}-\text { optical energy; } E_{k}-\text { kinetic energy }
$$

Independent estimate η based mainly on infrasound registrations (13 events, 3 meteorite falls) (Brown et al 2002) agrees with theoretical estimates based on AP model
Moravka: $\sim 10 \pm 5 \%$ (Borovicka et al 2003); Almahata Sitta $\sim 6-9 \%$ (Jenniskens et al 2009; Popova 2011)
Hayabusa: 1.3\% (Borovicka et al 2011)

Ablating piston model

Systematic calculations of radiation efficiency and ablation rate for H -chondrites (OC) and irons were done in the ablating piston model (AP) (Golub' et al. 1996;1997).

Maximal temperaturè $\mathbf{Z}^{\mathbf{m}}$

- of the air T_{am}
- of the vapor T_{vm}
- the brightness T_{bm} (panchromatic) in the cross-section of the bolide versus the distance along the axis Z
-Model $\sigma \sim 0.002-0.003 \mathrm{~s}^{2} / \mathrm{km}^{2}$
($14 \mathrm{~cm} ; 20 \mathrm{~km} / \mathrm{s}, 40-30 \mathrm{~km}$) - does not contradict to σ, extracted from observations
-is based on analogy between 1D nonstationary motion of a cylindrical piston and 2D
quasistationary flow around the body
-Radiation transfer (in the vapor and in the air) are taken into account
- Strict boundary between vapor and air is assumed (no mixing)
-Determines T, ρ, Ch, τ, spectra

Predicts:

- a large part of energy is radiated out of registration passband
- the luminous efficiencies in different passbands differ
- different parts of bolide are responsible for emission in the different spectral ranges

Theoretical and observed spectra of Benešov bolide

Possible explanation:
vapors occupy larger volume and have lower density than model predicted probably a consequence of mutual interaction of fragments after the meteoroid fragmentation and of a not well understood ablation process (air-vapor mixing)

First and still last detailed comparison of a purely theoretical radiative-hydrodynamic spectral model and the observed spectrum of a bolide Consistent picture of the Benešov bolide, including its mass, dynamics, fragmentation and radiation was obtained (Borovička et al, 1998a; 1998b)

Meteoroid fragmentation

Video records demonstrated complicated character of meteoroid disruption:

- formation of decelerated debris cloud and independent fragments continued their flight with subsequent further disruption

Modeling of meteoroid fragmentation

Meteoroid fragmentation:

- formation of separated fragments
- cloud of small fragments and vapor united by a common shock wave

Both types are realized in real events:
Benesov, Almahata Sitta, Tagish Lake,
+Chelyabinsk

Detailed study in the frame of model of separated fragments (Artemieva, Shuvalov 2002; Bland Artemieva 2006) - one of progressive fragmentation type models V $\sim 18 \mathrm{~km} / \mathrm{s}$; M>few kg

Iron and stones for stones $\sigma_{0} \sim 41^{7} \mathrm{dyn} / \mathrm{cm}^{2}$

Strength scaling law
$\sigma=\sigma_{\mathrm{s}}\left(m_{\mathrm{s}} / m\right)^{\alpha}(\sigma, m-t h e ~ s t r e n g t h ~ a n d ~ m a s s$ of the larger body; σ_{s}, m_{s} - those of tested specimen); small deviations are allowed $\sim 10 \%$
$\mathrm{M}_{\text {fall }} / \mathrm{M} \sim 5-10 \%$ for $\mathrm{M} \sim 100 \mathrm{~kg}-1000 \mathrm{t}$ stones Larger for irons (0.05-0.5)

No fragmentation for $\mathrm{M}<50 \mathrm{~kg}$

Result are dependent on assumed strength and fragment distribution at breakup
Fragmentation has no influence on entry of body larger $10 \mathrm{~km}\left(\mathrm{t}_{\text {flight }}<\mathrm{t}_{\text {fragmentation }}\right)$

6 fragments H5-6 chondrite (0.09-0.33 kg)
$\sum \mathrm{M} \sim 1.4 \mathrm{~kg}\left(\sim 0.1 \% \mathrm{M}_{0}\right)$ (predicted $\sum \mathrm{M} \sim 100 \mathrm{~kg} \sim 7 \% \mathrm{M}_{0}$)

Progressive fragmentation at $36-29 \mathrm{~km}$, possible disruption $>46 \mathrm{~km}$
along 10 km strewn field
Modeling: progressive fragmentation provides some agreement of fallen meteorites masses and numbers, strewn field size

Light curve fitting: many small fragments formed, probably another mass distribution at breakup; does not suggest large amount of dust formed

Strewn fields are another source of information about fragmentation behavior

Progressive fragmentation model: $\mathrm{M}_{0} \sim 1000 \mathrm{~kg}$, Mbale-like meteoroid $-\Sigma \mathrm{M}_{\text {fall }} \sim 220-240 \mathrm{~kg} ; \Sigma \mathrm{N} \sim 100-3000$; size of strewn field - close to observed one Formation a number of pieces at breakup seems describe the observed distribution better

Forming a number of pieces following power law distribution (Hartmann 1968)

Liquid like models

are applicable for large impactors,
which are destroyed so intensively that fragments couldn't be separated (> $>-10 \mathrm{~m}$ in size)
(Svetsov et al., 1995; Bland and Artemieva 2006: estimates are parameters dependent),
say nothing about fragments size
But its modifications provide reasonable energy release (similar to progressive fragmentation models)
were used to explain light curves meter in size bodies (Satellite Bolides and others) (Svetsov et al.,1995; Nemtchinov et al., 1997)

Formation of debris cloud - directly observed for Benešov bolide ($\mathrm{M} \sim 3000 \mathrm{~kg}$), Marshal Island bolide ($\mathrm{M} \sim 400$ ton); TC 2008 (Almahata Sitta; M~80 t); and others, including Chelyabinsk, 15 February 2013 (12 000 t)

Modeling efforts

Many models (Borovicka et al 2013, Brown et .al 2013, Avramenko et al. 2014 etc):
-complicated character of fragmentation

- H~ 50-20 km

Chelyabinsk dust trail

```
A
```

Dust cloud - formed during fragmentation, at $80-20 \mathrm{~km}$, more massive $40-25 \mathrm{~km}$

Detail of the train's thermal emission (5-6 s after formation)

After 3 hours - at L~1000 km
After 4-7 days - dust ring around pole (H~30-40km,

5 km thick, $\sim 300 \mathrm{~km}$ wide; 0.9-0.05 $\mu \mathrm{m}$)
After 3 months - still existed Gorkavyi et al. 2013

Челябинск

Electro-L, $\sim 8 \mathrm{~min}$ after entry

Other events:
3 September 2004 (Klekociuk et al., 2005):

$$
\mathrm{M} \sim 650-1400 \text { ton, } \mathrm{M}_{\text {dust }} \sim 1100 \mathrm{t}, \mu \mathrm{~m} \text {-sized }
$$

4-m sized 2008 TC $_{3}$:
$M_{\text {dust }} \sim 25 \% M_{0}$ (5\%-recondensed)
(Borovicka and Charvat, 2009)
Our modeling suggests that a similar value applies to Chelyabinsk

Meteorites strewn field

$60,32^{\circ} \mathrm{E}, 54,959^{\circ} \mathrm{N}-\sim 54,7^{\circ} \mathrm{N}, 61,3^{\circ} \mathrm{E},>80 \mathrm{~km}$ length

Confirmed locations of meteorite finds. Numbers on trajectory indicate meteor height

Borovicka et al 2013 - treated individual light/deceleration curves - good agreement with found meteorites mass/locations

Total meteorites mass

The relation of $\mathrm{m}_{\text {res }}$ to initial M

Old estimates:
$M_{\text {meteorites }} \sim 10 \% M_{o}$

Data on 22 falls with tracking data:
$\mathrm{m}_{\text {rec }} / \mathrm{M} \sim 0.1-3$ \% mainly
(0.001-10\%);

Smallest: <0.01\%
Some trend:
larger mass-smaller fraction

Ablation is more effective for fragments flying together in the same hot area (volumetric evaporation), resulting in decreased fraction of survived mass.

The larger body - then probably the larger part of fragments continue flight together and the smaller meteorites mass (Tunguska case).

Our estimates

(model for largest fragments+strewn field density for small ones)
Chelyabinsk: $\sum \mathrm{M} \sim 4-9$ ton - is only $0.03-0.06 \% \mathrm{M}$

Fragmentation scenario

Small meteoroids (<1-20 m):

 complicated fragmentation, where fragments:- may form debris cloud,
- may move as individual bodies,
- decelerate before total evaporation
- produce meteorites and dust deposition in the atmosphere
 -move as a cloud surrounded by a common shock,

Large meteoroids (>100-1000 m):

- do not decelerate in the atmosphere,
- produce craters

The boundaries between these regimes

- on projectile composition, entry V and impact ang

Temperature distribution, quasi-liquid, R=30 m, cometary meteoroid, V=30 km/s
Shuvalov\&Artemieva, 2002

pure gasdynamic run
with radiative transfer
with ablation and radiation
Ablation as evaporation (vapor flux $\Delta m=q \Delta t / Q, \quad q$-heat flux; Q-heat of evaporation), radiation in thermal conductivity assumption

Radiation transfer:

- considerably diminishes the near wake temperatures
- increases wake radius
- causes energy redistribution in the near wake

Ablation: - increases effective meteoroid size,

- increases wake size,
- wake core with vapor is colder than outer layers

One of possible scenarios of the Tunguska event (D=100 m; cometary; 45°; V~50km/s)

Main stages of evolution

- body deformed, flattned and fragmented into nonuniform debris jet
- debris jet evolution - the most energy release
- explosive - type evaporation and jet formation, its fast deceleration
- upward deceleration of hot vapor along the wake and plume formation

Different styles of impact
(Shuvalov and Trubetskaja, 2007)

Dependent on projectile sizes/material and trajectory angles α (to horizon) ; note different vertical scale.
Solid fragments of comet $D>100 \mathrm{~m}$ reach the ground at $\alpha \sim 90^{\circ} ; 300-\mathrm{m}$ asteroid could mainly burn in the atmosphere in 5^{0} oblique impact. Violet ellipse - parameters of Tunguska body

The height of energy release may be essentially decreased (10-20 km) if internal friction effect is included (Shuvalov and Trubetskaya 2010)

Concluding remarks

Interaction of meteoroid with atmosphere is dependent on size/mass, velocity and altitude of flight, meteoroid properties
Fragmentation is important for different sized body, neglecting fragmentation in interpretation of observations may led to erroneous results

- Free-molecule regime and Transition regime

Uncertainty: luminous/ionizing efficiencies
importance of fragmentation - question about meteoroid structure
state of ablated material, spectra
High-resolution video observations - provide strong constraints for models, will allow to improve understanding of both meteor-atmosphere interactions, and the physical properties (strength, density, mass) of meteoroids and their parent bodies
progress during last years
DSMC and hybrid modeling are good tools here

- Continuous flow regime

Still there are no totally self-consistent 2D-3D model with radiation/ablation for whole range of R/V/H and compositions;
Estimates of C_{h} and luminous efficiencies used - demonstrate wide dispersion, Strength, fragment distribution at breakup, realization of peculiar type of fragmentation, influence of QCF on C_{h} - are still not well determined
Detail comparison of observational and model results is done for limited number of events due both to incomplete observational data and modeling problems

Shock wave of Chelyabinsk meteoroid

Map of glass damage on the ground

Contours :
(from dark to light)
300 kt $\Delta \mathrm{p}>1000 \mathrm{~Pa}$, 520 kt $\Delta \mathrm{p}>1000 \mathrm{~Pa}$, 300 kt $\Delta \mathrm{p}>500 \mathrm{~Pa}$, 520 kt $\Delta \mathrm{p}>500 \mathrm{~Pa}$

The shape of damaged area - corresponds to energy deposition along extended part of trajectory
$P_{\max }>4.3 \mathrm{kPa}$
-solid orange circles - for reported damage -open black circles - for no damage; -solid red circles the most damaged villages in each Korkino: P>1.2-2.5 kPa district (as reported by the government)..
White - the fireball brightness on a linear scale.

Chelyabinsk, Korkino model $\sim 2-4 \mathrm{kPa}$

Brown et al.(2013):
P~2.6-3.8 kPa in Chelyabinsk

Effective altitude Z dependence on meteoroid size

- for D~10-30 m the uncertainty in effective altitude may reach 10-15 km (Chelyabinsk, $\mathrm{TC}_{3} 2008$ and other cases)
-(strength, fragmentation features etc)

