Analysis of different methods used to compute meteors orbits

A. Egal, P.S. Gural,

Meteoroids 2016
june 9th, 2016

Introduction

- \neq measured and theoretic orbits (e.g. Draconids 2011, Leonids 1999)

Guzet station

Technical challenge: CABERNET

- 3 cameras, $\mathrm{FOV}=40^{\circ} \times 26^{\circ}$
- Spatial resolution 0.01° /pix
- Temporal resolution: 5-10 ms (electronic shutter at $100-200 \mathrm{~Hz}$)
\rightarrow Need for a precise velocity
\rightarrow Reduction process?

Usual methods

- Ceplecha, 1987

Geometric, Dynamic, orbital, and photometric data on meteoroids from photographic fireball networks

- Borovička, 1990

The comparison of two methods of determining meteor trajectories from photographs

- Gural, 2012

A new method of meteor trajectory determination applied to multiple unsynchronized video cameras

Usual methods

Multi-parameter fitting (MPF):

- 3 deceleration models (constant speed, linear or exponential deceleration)

\rightarrow Complex optimization problem

Optimization methods

Techniques tested:

- Analytical least squares
- Davidon-Fletcher-Powell
- Nelder-Mead (NM)
- Conjugate gradient
$\overline{\text { ल }}$ - - Simulated annealing + MCMC
- Simulated annealing + NM
- Particle Swarm Optimization (PSO)

Best strategy: PSO + LS

- \nearrow chances to find a global min.
- Large search space

Optimization methods

Techniques tested:

- Analytical least squares
- Davidon-Fletcher-Powell
- Nelder-Mead (NM)
- Conjugate gradient
$\overline{\text { ल }}$ - - Simulated annealing + MCMC
- Simulated annealing + NM
- Particle Swarm Optimization (PSO)

Best strategy: PSO + LS

- \nearrow chances to find a global min.
- Large search space

Simulations: 'fakeors' (G. Barentsen)

Validation: \sim realistic fakeors

- $\mathrm{Q}=60^{\circ}, V_{\infty}=30 \mathrm{~km} \cdot \mathrm{~s}^{-1}$
- $\Delta t=5 \mathrm{~ms}$, error ϵ

Following the propagation models:

- Constant velocity
- Exponential deceleration

Disintegration model -AFM-:

- Borovička et al. (2007)
- No fragmentation
\rightarrow error ϵ for CABERNET ?

Error on the centroids location

Estimate:

- 2D gaussian fit (classic/MoG) \rightarrow formal errors $\left[\sigma_{f}\right]$
- χ^{2} goodness of fit test (signif. 5%) \rightarrow if success: estimate of the scaling variance σ
- Final uncertainty $\epsilon=\sigma *\left[\sigma_{f}\right]$

Centroids recorded by the Pic du Midi station which have passed the χ^{2} goodness of fit test

CABERNET:

1200 centroids over the whole FOV $\rightarrow \epsilon_{x} \sim \epsilon_{y}<0.09$ pix $\sim 3^{\prime \prime}$

Accuracy on the velocity determination

Trajectory:

- Ceplecha (1987), Borovička (1990)

Velocity:

- Assuming no deceleration
- Mean velocity, linear fit
- With deceleration
- Atmospheric density (MSISE-90)

$$
V(t)^{2}=V_{\infty}^{2}+K \rho(t)
$$

- Jacchia \& Whipple (J\&W, 1961)

$$
L(t)=L_{0}+V_{\infty} t+C e^{(k t)}
$$

Trajectory \& velocity:

- Multi-parameter fitting (MPF)

Constant velocity, $\mathrm{V}_{\infty}=30 \mathrm{~km} / \mathrm{s}$

Accuracy on the velocity determination

Constant velocity:

- Mean V ~J\&W ~MPF only for $\mathrm{Q}=60^{\circ}$
- MPF: accuracy « 1% on \vec{V}_{∞} for CABERNET

Exponential deceleration:

- Ignoring deceleration \rightarrow very inaccurate
- MPF best solution, accuracy $\sim 1 \%$ on $\overrightarrow{V_{\infty}}$ for $\epsilon=0.1$ pix

Accuracy on the velocity determination

$$
\mathrm{AFM}, \mathrm{~V}_{\infty}=30 \mathrm{~km} / \mathrm{s}
$$

Disintegration model:

- Deceleration of 4.5\% between V_{∞} and $\overrightarrow{V_{\text {end }}}$
- Estimate of $\left(\overrightarrow{X_{b e g}}, \overrightarrow{V_{b e g}}\right):$ MPF better
- Accuracy of 1.25% for CABERNET
- Deceleration \nsim exponential: initial error of MPF and J\&W
\rightarrow Validity of the deceleration model ?

Influence of the geometry

Limitations

- Local minima/ill-conditioned problem ?

Test: Ideal geometry, exp. deceleration

- Small changes \rightarrow large variation
- Conditional ellipsoids
- Covariance matrix
- $C N=\frac{\|J(x)\|_{\infty}}{\|f(x)\|_{\infty} /\|x\|_{\infty}}>1$
\rightarrow Propagation models ill-conditioned (especially exponential)
\rightarrow Worse if ϵ

Conclusions

Error on the location of the centroids

- Fit 2D-gaussian
- CABERNET: accuracy <0.09 pixel ~ 3 "

Accuracy of some velocity computations

- PSO good implementation of the MPF
- MPF most accurate technique to compute $\overrightarrow{V_{\infty}}$ for each ϵ
- MPF allow velocity computation even for low convergence angles
- Precision of $1-2 \%$ for CABERNET and $\overrightarrow{V_{\infty}}=30 \mathrm{~km} \cdot \mathrm{~s}^{-1}$
but...

Conclusions

Limitations

- Propagation models ill-conditioned
- Difficult to optimally determine $\overrightarrow{V_{\infty}}$ and deceleration parameters
- Difficulty \nearrow with ϵ : acceptable for a small error (as for CABERNET)

Future extensions :

- Find well-conditioned deceleration model

Thank you for your attention!

You haven't taken the test yet ? Please come to see me!

Influence of the geometry

Constant velocity, $\mathrm{V}_{\infty}=30 \mathrm{~km} / \mathrm{s}$

Error on the centroids location

	Classic gaussian		MoG function		model_min (ϵ)	
	ϵ_{x}	ϵ_{y}	ϵ_{x}	ϵ_{y}	ϵ_{x}	ϵ_{y}
most frequent ϵ	0.080	0.035	0.030	0.027	0.067	0.035
center of histogram distribution	0.090	0.054	0.064	0.025	0.087	0.052

Results of the error determination in pixels - Pic du Midi

	Classic gaussian		MoG function		model_min (ϵ)	
	ϵ_{x}	ϵ_{y}	ϵ_{x}	ϵ_{y}	ϵ_{x}	ϵ_{y}
most frequent ϵ	0.077	0.070	0.046	0.062	0.077	0.040
center of histogram distribution	0.084	0.074	0.080	0.074	0.083	0.066

Results of the error determination in pixels - Montsec

Error on the centroids location

Estimated uncertainty of the Y location

Conditional maps of the cost function for different values of $V_{b e g} / x$ and $V_{b e g} / z$. The first and second plot present the conditional maps for a constant velocity and for an exponential deceleration. The last plot on the right illustrates the difference between the first two ones.

Influence of the geometry

