0	000	00000	00	00
	Analysis o	of different n	nethods used	to
# BEI		compute	e meteors orbi	ts
с Ф Ф		J. Va	A. Egal , P.S. Gura aubaillon, F. Colas, W	al, . Thuillot
	,		Meteoroids 2016	
			june 9th, 2016	
R	IMCCE W			

Velocity determination

Limitations

イロト イヨト イヨト イヨト

Trajectory

Introduction

æ

Conclusion

Introduction	Trajectory	Velocity determination	Limitations	Conclusion
•	000		00	00
Introduction	I			

Guzet station

 ≠ measured and theoretic orbits (e.g. Draconids 2011, Leonids 1999)

Technical challenge: CABERNET

- 3 cameras, $FOV = 40^{\circ} \times 26^{\circ}$
- Spatial resolution $0.01^{\circ}/\text{pix}$
- Temporal resolution: 5-10 ms (electronic shutter at 100-200Hz)
- \rightarrow Need for a precise velocity
- \rightarrow Reduction process?

Introduction 0	Trajectory ●○○	Velocity determination	Limitations	Conclusion 00
Usual met	chods			

• Ceplecha, 1987

Geometric, Dynamic, orbital, and photometric data on meteoroids from photographic fireball networks

Borovička, 1990

The comparison of two methods of determining meteor trajectories from photographs

• Gural, 2012

A new method of meteor trajectory determination applied to multiple unsynchronized video cameras

Introduction 0	Trajectory ○●○	Velocity determination	Limitations 00	Conclusion
Usual methods				

Multi-parameter fitting (MPF):

• 3 deceleration models (constant speed, linear or exponential deceleration)

$$\begin{array}{c}
\vec{X} = \vec{X}_{beg}, \vec{V}_{beg}, \vec{t}_{beg}, \vec{t}_{obs,je}, \vec{t}_{obs,je},$$

 \rightarrow Complex optimization problem

(日) (日) (日)

Introduction 0	Trajectory ○○●	Velocity determination	Limitations 00	Conclusion
Optimizati	on method	S		

Techniques tested:

local

global

- Analytical least squares
- Davidon-Fletcher-Powell
- Nelder-Mead (NM)
- Conjugate gradient
- Simulated annealing + MCMC
- Simulated annealing + NM
- Particle Swarm Optimization (PSO)

Best strategy : PSO + LS

- \nearrow chances to find a global min.
- Large search space

Example of the PSO

▶ < Ξ ▶</p>

Introduction 0	Trajectory 000	Velocity determination	Limitations	Conclusion
Optimizatio	n methods	5		

Techniques tested:

local

global

- Analytical least squares
- Davidon-Fletcher-Powell
- Nelder-Mead (NM)
- Conjugate gradient
- Simulated annealing + MCMC
- Simulated annealing + NM
- Particle Swarm Optimization (PSO)

Best strategy : PSO + LS

- \nearrow chances to find a global min.
- Large search space

Example of the PSO

▶ < Ξ ▶</p>

Validation: \sim realistic fakeors

- Q=60°, $V_{\infty}=$ 30 km.s $^{-1}$
- $\Delta t = 5 ms$, error ϵ

Following the propagation models:

- Constant velocity
- Exponential deceleration

Disintegration model -AFM-:

- Borovička et al. (2007)
- No fragmentation

 \rightarrow error ϵ for CABERNET ?

Introduction 0	Trajectory 000	Velocity determination	Limitations 00	Conclusion
Error on the	centroids l	ocation		

Estimate:

- 2D gaussian fit (classic/MoG) \rightarrow formal errors [σ_f]
- χ^2 goodness of fit test (signif. 5%) \rightarrow if success: estimate of the scaling variance σ
- Final uncertainty $\epsilon = \sigma * [\sigma_f]$

CABERNET:

1200 centroids over the whole FOV $ightarrow \epsilon_x \sim \epsilon_y <$ 0.09 pix $\sim 3''$

Centroids recorded by the Pic du Midi station which have passed the χ^2 goodness of fit test

- Atmospheric density (MSISE-90) $V(t)^2 = V_\infty^2 + K
 ho(t)$
- Jacchia & Whipple (J&W, 1961) $L(t) = L_0 + V_{\infty}t + Ce^{(\kappa t)}$

Trajectory & velocity:Multi-parameter fitting (MPF)

Accuracy on the velocity determination

Constant velocity:

- Mean $V \sim J\&W \sim MPF$ only for Q=60°
- MPF: accuracy « 1% on $\vec{V_{\infty}}$ for CABERNET

Exponential deceleration:

- Ignoring deceleration \rightarrow very inaccurate
- MPF best solution, accuracy $\sim 1\%$ on $\vec{V_{\infty}}$ for $\epsilon = 0.1$ pix

Introduction	Trajectory	Velocity determination	Limitations	Conclusion
0	000		00	00
٨				

Accuracy on the velocity determination

Disintegration model:

- Deceleration of 4.5% between V_{∞} and $\vec{V_{end}}$
- Estimate of (X⁻_{beg}, V⁻_{beg}): MPF better
- Accuracy of 1.25% for CABERNET
- Deceleration ∠ exponential: initial error of MPF and J&W
 - \rightarrow Validity of the deceleration model ?

Introduction 0	Trajectory 000	Velocity determination	Limitations ●○	Conclusion
Influence	of the room	otro (

Introduction 0	Trajectory 000	Velocity determination	Limitations ○●	Conclusion
Limitations				

• Local minima/ill-conditioned problem ?

Test: Ideal geometry, exp. deceleration

- $\bullet\,$ Small changes $\rightarrow\,$ large variation
- Conditional ellipsoids
- Covariance matrix

• $CN = \frac{||J(x)||_{\infty}}{||f(x)||_{\infty}/||x||_{\infty}} > 1$

→ Propagation models ill-conditioned (especially exponential)

 \rightarrow Worse if $\epsilon \nearrow$

Introduction	Trajectory	Velocity determination	Limitations	Conclusion
0	000		00	●○
Conclusions				

Error on the location of the centroids

- Fit 2D-gaussian
- CABERNET: accuracy < 0.09 pixel \sim 3"

Accuracy of some velocity computations

- PSO good implementation of the MPF
- MPF most accurate technique to compute $ec{V_{\infty}}$ for each ϵ
- MPF allow velocity computation even for low convergence angles
- Precision of 1-2% for CABERNET and $ec{V_{\infty}}=$ 30 km.s^{-1}

but...

Introduction	Trajectory	Velocity determination	Limitations	Conclusion
0	000		00	○●
Conclusions				

Limitations

- Propagation models ill-conditioned
- \bullet Difficult to optimally determine $\vec{V_{\infty}}$ and deceleration parameters
- Difficulty \nearrow with ϵ : acceptable for a small error (as for CABERNET)

Future extensions :

• Find well-conditioned deceleration model

Introduction	Trajectory	Velocity determination	Limitations	Conclusion
0	000	00000	00	00

Thank you for your attention!

You haven't taken the test yet ? Please come to see me !

Introduction	Trajectory	Velocity determination	Limitations	Conclusion
O	000		00	00
Influence of	of the geom	netry		

Introduction	Trajectory	Velocity determination	Limitations	Conclusion
0	000	00000	00	00

Error on the centroids location

	Classic gaussian		MoG function		$model_min(\epsilon)$	
	ϵ_{x}	ϵ_y	ϵ_{x}	ϵ_y	ϵ_X	ϵ_y
most frequent ϵ	0.080	0.035	0.030	0.027	0.067	0.035
center of histogram distribution	0.090	0.054	0.064	0.025	0.087	0.052

Results of the error determination in pixels - Pic du Midi

	Classic gaussian		MoG function		$model_min(\epsilon)$	
	ϵ_x	ϵ_y	ϵ_x	ϵ_y	ϵ_x	ϵ_y
most frequent ϵ	0.077	0.070	0.046	0.062	0.077	0.040
center of histogram distribution	0.084	0.074	0.080	0.074	0.083	0.066

Results of the error determination in pixels - Montsec

æ

▲ 同 ▶ → 目 ▶ → ● ▶ →

Introduction	Trajectory	Velocity determination	Limitations	Conclusion
0	000	00000	00	00

Error on the centroids location

Auriane EGAL Meteoroids, june 9th, 2016

Conditional maps of the cost function for different values of V_{beg}/x and V_{beg}/z . The first and second plot present the conditional maps for a constant velocity and for an exponential deceleration. The last plot on the right illustrates the difference between the first two ones.

≪ ≣⇒

Introduction	Trajectory	Velocity determination	Limitations	Conclusion
0	000	00000	00	00
	C LL S S S			

Influence of the geometry

