Properties of meteoroids derived using narrow-band photometry

Francisco Ocaña¹, Jaime Zamorano¹, Enrique Solano^{2,3}

(1) Universidad Complutense de Madrid,(2) Centro de Astrobiología, (3) Spanish Virtual Observatory

9th June - Meteoroids 2016 ESTEC, The Netherlands

meteoroids 2016

Colour video spectra – J. Izquierdo (UCM)

TBT project

50-cm telescopes -- NEOs and satellites

Undergraduate Project

 Simulations to optimise the detection of meteors Departamento de Astrofísica y CC de la Atmósfera Universidad Complutense de Madrid

Narrow-band photometry of meteors

Francisco Ocaña González Final year research project , under the supervision of Profs. Jaime Zamorano y Jesús Gallego.

Introduction

- Final year research project
- Arquimedes Award (Ministry of Education of Spain)
- Master project using spectra from literature
 - 14 spectra
 - Manually digitised
 - Some basic science cases and colour-colour diagrams

Introduction

- Master thesis: Integral Field Spectroscopy of LCBGs
- Synthetic photometry using spectra
- Spectra analysis
 - 22 galaxies
 - 331 fibers per pointing
 - Around 30k spectra!

Narrow-band photometry

- Narrow-band filters to study the properties of the meteoroids (low-res spectroscopy)
- Other similar works: ALIS system (Brändtström+,2001), Leonids (Pellinnen-Wannberg+,2004)

Narrow-band photometry

• Why?

- Easier calibration
- No need to use an order blocking filter
- Larger dynamic range
 - Background is reduced
 - Optimise each band (different gain/sensor for different lines)
- Continuous monitoring of the extinction
- Observation of dimmer meteors
- Use of BVR/RGB images
- Automatic pipeline!

Design of the system

- Emission and continuum measures
- Measuring at least Ca, Cr, Fe, Mg, Mn, N, Na y Si
- System reffered to N_{Fe}
- Optical range (H&K CaII 800nm)
- Hot and main components
- Filter bandwidth~10nm \rightarrow R~50
- Elements with different excitation states
- Cost of the setup is proportional to the number of bands \rightarrow modular

Design of the system

- Simulation for different meteor spectra, bandwiths, sky emission
- Characteristics
 - 7 to 15nm width
 - R~50
 - 15 bands
 - Covering 150nm (of the 400nm)

Results from experimental setup at UCM Observatory

Synthetic photometry

- Master project
- VO tools for synthetic photometry

- Spectra from literature
 - 14 spectra
 - Manually digitised
 - Some basic science cases and colour-colour diagrams

Input data

Catalogue of representative meteor spectra. Vojáček+,2015.
A&A 580, A67

Catalogue of representative meteor spectra*

V. Vojáček^{1,2}, J. Borovička¹, P. Koten¹, P. Spurný¹, and R. Štork¹

- ¹ Astronomical Institute of Academy of Sciences, Fričova 298, 25165 Ondřejov Observatory, Czech Republic e-mail: vojacek@asu.cas.cz
- ² Institute of Astronomy, Charles University in Prague, Faculty of Mathematics and Physics, V Holešovičkách 2, 18000 Prague 8, Czech Republic
- Vizier archive
- Received 24 September 2014 / Accepted 6 May 2015
- J/A+A/580/A67 Catalogue of representative meteor spectra (Vojacek+, 2015)
- Sample
 - 84 meteor spectra (54 sporadic, 30 shower member)
 - Range 370-880nm, σ 1.5 -3 nm
 - Magnitude -2, +3 (1-10mm)
 - Total intensities of multiplets Mg1-2, Na1-1, and Fe1-15
 - All of them have orbit and trajectory computerd

Input data

Input data

Raw data

Synthetic photometry for 15 bands + BVR filters

Can we get the fluxes from synthetic photometry ?

Some results

Vojacek+, 2015

Some results

Cannot differentiate between Mg and Fe lines (around 500-550 nm)

Artifact resulting from spectra resolution impact on synthetic photometry!

Design of the system

- Simulation for different meteor spectra, bandwiths, sky emission
- Characteristics
 - 7 to 15nm width
 - R~50
 - 15 bands
 - Covering 150nm (of the 400nm)

Results from experimental setup at UCM Observatory

BVR photometry

V-R colour index vs speed Fast meteors are redder (R < V)

See also: S. Ehlert, this conf.

Observational bias?

Adding more filters to the VO tool

e.g., Nikon D3 and Nikon D3S RGB filters (some of the cameras used by astronauts at the ISS)

Observational setups

Real photometry!

Ocaña+, 2011

Gural, 2015

Bloxam+, this conf!

Conclusions / Discussion

Narrow-band photometry of meteors have quite some advantages over spectroscopy

Dimmer objects! Spectra from very dim objects (see Watanabe+, this conf!)

This work, using **synthetic photometry**, shows that some results from spectroscopy are **reproducible**!

Some groups are already making some observations → real narrow-band photometry

Open questions?

Extend it to 800nm -1100nm? Or to <400nm (observations from cubesats) Other bands? Sloan? RGB?

Properties of meteoroids derived using narrow-band photometry

Francisco Ocaña¹, Jaime Zamorano¹, Enrique Solano^{2,3}

Questions? Contact me! fog@astrax.fis.ucm.es

9th June - Meteoroids 2016 ESTEC, The Netherlands

meteoroids 2016

