

Determination of meteoroid entry parameters for terrestrial strewn fields

Malgorzata Bronikowska¹ N. A. Artemieva^{2,3,4} K. Wünnemann⁴ W. Szczuciński¹

¹Geology Institute, Adam Mickiewicz University in Poznań, Poland ²Institute of Dynamics of Geospheres, Russian Academy of Science ³Planetary Science Institute, Tuscon

⁴Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity

Science, Berlin

Introduction

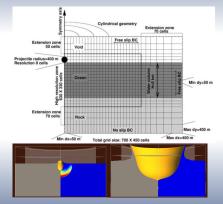
Introduction an motivation

The goal of this study

- to reconstruct atmospheric entry scenario for several known terrestrial strewn fields,
- to estimate the range of entry parameters resulting in craters on the ground.

Motivation

- Impact events resulting in crater strewn field can happen within time interval 500 years (Bland & Artemieva (2006)),
- crater strewn fields are natural laboratories for studies on the dynamic of big meteoroids during their flight through the atmosphere.



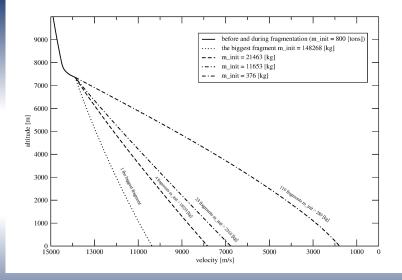
Methodological approach in general

- Construction of material model representative for target material of studied terrestrial strewn field,
- determination of material-depending scaling parameters for estimation of energy required for the formation of crater with a given diameter,
- 3 Atmospheric entry simulations for the whole entry parameters space,
- Exclusion of non-suitable entry parameters, which can not reproduce observed crater field

Scaling on impact craters size

iSALE2D hydrocode (Wünnemann et al. (2006), Amsden A. A. et al. (1980))

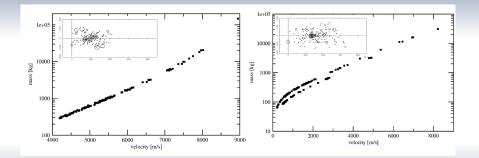
$$\begin{cases} \frac{\rho V}{M} &= \pi_{V} \\ \left\{ D\left(\frac{\rho}{M}\right)^{\frac{1}{2}} \right\} = \pi_{0} \\ \left\{ D\left(\frac{\rho}{M}\right)^{\frac{1}{2}} \right\} = \pi_{0} \\ \left\{ d\left(\frac{\rho}{M}\right)^{\frac{1}{2}} \right\} = \pi_{d} \end{cases} = \mathbb{P}\left[\left\{ 1.61 \frac{gL}{U^{2}} \right\} \left\{ \frac{\gamma}{\rho U^{2}} \right\} \left\{ \frac{\rho}{\delta} \right\} \right]$$


 $\begin{aligned} \pi_D &= \pi_2^\alpha \cdot \pi_4^\beta \\ \alpha \;,\; \beta \;\text{- material-dependent} \\ \text{parameters} \end{aligned}$

Meteoroids 2016, Noordwijk

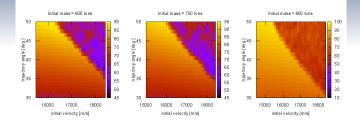
Atmospheric entry model

- We integrate numerically standard equations for ablation and deceleration,
- 2 meteoroid internal strength in each time-step is described by Weinbull statistics ($\alpha = 0.1$),
- when dynamic loading exceeds meteoroid internal strength, we solve the equation describing projectile deformation (Pancake model) with the restriction of pancake growth to 3.5 relative to its initial radius,
- we draw masses of fragments using the standard cumulative size frequency distribution $(N_{>m} = Cm^b \ b = 0.8)$,
- we certain random positions of fragments as well as their velocities and directions



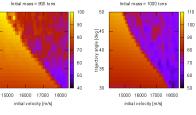
 $m_{init} = 800 \ [tons] \ \theta_{init} = 40 \ [^{\circ}] \ v_{init} = 16 \ [km/s]$

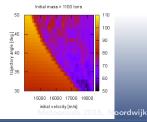
Meteoroids 2016, Noordwijk


Example outputs

left: $m_{init} = 1000 [tons] \ \theta_{init} = 30 [^{o}] \ v_{init} = 15 [km/s]$ right: $m_{init} = 1000 [tons] \ \theta_{init} = 30 [^{o}] \ v_{init} = 18 [km/s]$

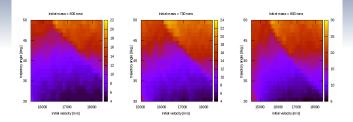
Parameters study

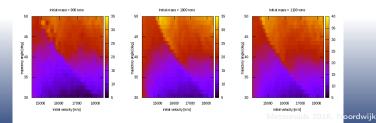




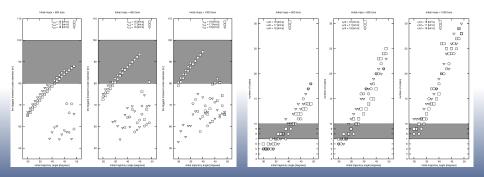
initial velocity [m/s]

trajectory 5


30

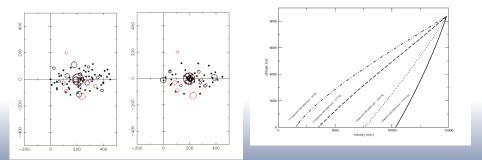


Parameters study



Example results - the Morasko strewn field

- The biggest crater diameter > 80 meters and < 100 meters,
- 2 Avarage number of craters 7 10,



Meteoroids 2016, Noordwijk

Example results - the Morasko strewn field

 $m_{init} = 800 \ [tons], \ v_{init} = 17 \ [km/s], \ \theta_{init} = 35 \ [^o]$

Entry parameters which can be considered as likely for the Morasko strewn field.

M _{init} [tons]	<i>v_{init}</i> [km/s]	θ	N	D _{biggest}
600	16	41 - 42	10	81 - 82
600	17	40 - 43	8 - 10	80 - 83
700	16	40	10	82
700	17	37 - 40	8 - 9	80 - 84
700	18	36	7	80
800	16	35 - 37	9 - 10	80 - 83
800	17	34 - 38	8 - 10	80 - 86
800	18	33	7	81
900	16	33	9	82
900	17	32 - 35	7 - 10	81 - 86
1000	16	31 - 32	9 - 10	80 - 83
1000	17	30 - 34	8 - 10	80 - 88
1100	16	30 - 32	9 - 10	82 - 87
1100	17	31 - 32	9 - 10	84 - 85

Conclusions

Conclusions

- It is impossible to find one unique scenario of strewn field formation,
- however we can consider some scenarios as more or less likely (some of them also as totally impossible),
- determination of initial conditions for crater-forming meteoroids allow to reconstruct of the whole impact process: from energy deposition in the atmosphere, radiation, to the energy of impacting fragments, possible shock metamorphism, the distribution of ejected material and environmental effects of such events.