

Meteoroid Impact Detection for Exploration of Asteroids (MIDEA): A concept for asteroid prospecting

Nicolas Lee and Sigrid Close June 10, 2016

Meteoroids 2016, Noordwijk

Motivation

Solar system science

- Meteoroid and dust dynamics
- Geology and chemistry of primitive bodies

In situ resource characterization/utilization

- Candidate asteroid selection for retrieval
- Target surface regions for exploitation

Concept overview

- Use natural meteoroid population to probe asteroid surface through impacts
- Measure impact plasma to characterize surface

Concept overview

- Meteoroid Impact Detection for Exploration of Asteroids: MIDEA
- Targeting 100–300 m asteroids
- Nanogram-sized meteoroid impactors
- Single small (6–12U) parent spacecraft to asteroid
- 5–10 deployable free-flying sensors orbiting at 100–300 m altitude

Hypervelocity impact

- Impact at speed greater than sound speed in the material
- Results in vaporization and ionization of the impactor and target

Impact ionization

- Charge production based on power law $Q = Cm^{\alpha}v^{\beta}$
- Wide range of experimental values obtained for C and β

Plasma expansion

- Nearly hemispherical plume expanding at 20 km/s
- Density falls off with distance (inverse cubic)
- Expected detection threshold at about 300–500 m
- Determine composition through ion time-of-flight

Grun interplanetary flux model

- Applicable near 1 AU, 10⁻¹⁸ to 100 g
- Based on lunar craters, zodiacal light, in situ measurements

Meteoroid Engineering Model

- Based on meteor radar, calibrated to Grun model near 1 AU
- Applicable from 0.2 to 2 AU, 10⁻⁶ to 10 g
- Would like to compare with IMEM

Finished processing state vector 8 out of 7										
Description Meteoroid Engineering Model for use in determining the flux and speed of the background meteoroid environment for spacecraft in orbit about the Sun or on interplanetary transfer orbits.		30 - 28 - 26 -	^							
State Vector Input Filename R2_0_4/UserFiles \tokawaHelio2016sm.txt Browse Results Output Filename R2_0_4/UserFiles \tokawaHelio2016sm.txt Browse Select a Spaceraft Orientation Cube, ram faces velocity vector <default> Enter the Limiting Mass (Uog of Mass (g)) -6 Output Coordinate Frame -6 Output Coordinate Frame Output Coordinate Frame Output Standard Deviation Files ? Output Standard Deviation Files ? Output Intermediate Distribution Files ? Output Intermediate Distribution Files ? C Yes C No C Yes Run Type C Sequential C Random Enter the number of random draws from the state vector file 7 * See Help for a appropriate vali Output Resolution - 1 deg x 1 deg x 2 km/s C 4 deg x 4 km/s C 5 deg x 5 deg</default>	r determining r det	24 22 20 18 16 14 12 10 08 06 04 02								
Calculate Exit About Help View Results Plot Speed Distribution Finished All Post Processing		00 -1 ₋₁ 0	20	40	60 Spea	80 ed (km/s)	100	120	140	16

Reference asteroid: Itokawa

- Discovered in 1998, visited by Hayabusa in 2005
- S-type asteroid, possibly contact binary
- 535 x 294 x 209 m
- 0.95 to 1.7 AU orbit

Generated from Gaskell Itokawa Shape Model

Itokawa meteoroid environment

Stanford

University

Itokawa meteoroid environment

Stanford University

- Sun-facing flux
- Scale from MEM microgram limit to nanogram (~5–10 µm) using Grun model

Itokawa meteoroid environment

Stanford University

- Sun-facing flux
- Scale from MEM microgram limit to nanogram (~5–10 µm) using Grun model
- Apply velocity threshold of 20 km/s

Mission parameters

- 0.1–0.3 impacts per square meter per day
- One impact detection every few seconds
- Every square meter covered in 3–10 days

Potential meteoroid research

- Identification of new meteoroid streams intersecting asteroid path
- Determination of background flux
- Selection of asteroid targets corresponding to intersection with known meteoroid streams

Conclusions

- Meteoroids, typically treated as a threat, can serve as useful probes into composition of asteroids
- Nanogram-sized meteoroids impact at reasonably frequent rate
- Impact plasma sensors provide a low-mass/cost alternative to spectroscopy for preliminary exploration