

NGC 6101 NGC 6362

IC 4499

SMC

47 Tuc NGC 362

Carina

NGC 2257 LMC

NGC 1851

van der Marel & Sahlmann, 2016

Gaia operations

- Gaia in routine operations since July 2014
- Scanning operations with observing strategy of continuous measuring
 - Dead-time: orbit maintenance, micrometeoroids, decontaminations, ground station weather
- Nominal 5-year mission ends mid-2019
- Estimated end of mission due to cold gas exhaustion end-2023 (±1year)
 - Process started to seek funding for mission extension (mid-2019 till the end)

Gaia astrometry

- Astrometric measurements: 556 billion
 - G<20.7 mag
- In crowded regions on-board resource allocation exhausted
 - Selected crowded regions imaged with Gaia Sky Mapper
- Bright limit around G=2-3 mag
 - All bright stars imaged (G<3 mag) (Gaia SM)
 - Looking into more complete data collection for these stars

Gaia photometry

- Photometric measurements: 120 billion
 - G<20.7 mag
 - Spectrophotometry
 - 330-680 nm BP
 - 640-1050 nm RP
- Astrometric measurements also photometric in G-band
- In crowded regions on-board resource allocation exhausted
- Bright limit around G=2-3 mag
 - Looking into more complete data collection for these stars

Gaia spectroscopy

- Spectroscopic measurements: 11 billion
 - G_{RVS} < 16.2 mag
 - 845-872 nm with R about 11,000
 - Radial Velocity Spectrometer for >100 million radial velocities
 - Spectroscopy till about G_{RVS}=12 mag
- In crowded regions on-board resource allocation exhausted to some extent, but crowdedness sets in earlier
- Bright limit around G=2-3 mag
 - More complete data collection for these stars may take place

Scientific performance

End of mission scientific performance estimates for an unreddened Solar type (G2V) star

V-magnitude	Astrometry (parallax)
6 to 12	5-14 µas
15	25 μas
20	540 µas

Photometry (BP/RP integrated)	Spectroscopy (radial velocity)
4 mmag	1 km/s

13 km/s 4 mmag

60 (RP) – 80 (BP) mmag

Asteroid detection

-

Double lined spectroscopic binaries

HIP 70674

credits: ESA/Gaia/DPAC/CU6/Yassine Damerdji (Observatoire d'Alger/ Institut d'Astrophysique et de Géophysique de Liège) & Pasquale Panuzzo (CNRS/Observatoire de Paris)

Preliminary photometry

ESA/Gaia/DPAC/CU5/F. De Angeli, D.W. Evans, M. Riello (University of Cambridge)

NGC 5139 (Omega Cen)

The July 19, 2016 Pluto occultation our prediction as of early July

green dots: sites involved in the campaign (not all got data!)

The July 19, 2016 Pluto occultation, prediction using the GAIA star position (and estimation of its pm), plus the New Horizons-updated ephemeris

green dots: sites involved in the campaign (not all got data!)

green dots: sites involved in the campaign (not all got data!)

Conclusions

Gaia is on the way to fulfil its promise Processing task is huge and DPAC work in the coming years is essential

