Probing the link between atmosphere and interior

Jérémy Leconte

ELAB *

Ammonia map from Bolton et al. (2017)

	Jupiter	Saturn
$M_{\rm p} [10^{26} {\rm kg}]$	18.986112(15)	5.684640(30)
$R_{\rm eq} [10^7 {\rm m}]$	7.1492(4)	6.0268(4)
$R_{\rm pol}[10^7 {\rm m}]$	6.6854(10)	5.4364(10)
$P_{\rm rot}^{1} [10^4 \text{ s}]$	3.57297(41)	3.83577(47)
$T_{1\text{bar}}[K]$	165.(5)	135.(5)
$F_{\rm tot}$ [W.m ⁻²]	5.44(43)	2.01(14)
$J_2 \times 10^2$	1.4697(1)	1.6332(10)
$J_4 \times 10^4$	-5.84(5)	-9.19(40)

08:08 UT 303.6W 07:44 UT 307.9W 296.9W 310.9W 290.1W 18.7µm 12.3µm 8.6µm 10.7µm

Ammonia map from Bolton et al. (2017)

What are the <u>degeneracies</u>?

Can ARIEL help with it?

(Sub)stellar evolution equations

$$\frac{\partial r}{\partial m} = -\frac{1}{4\pi r^2 \rho}$$

$$\frac{\partial P}{\partial m} = -\frac{Gm(r)}{4\pi r^4}$$

$$\frac{\partial l}{\partial m} = \epsilon - T\frac{\partial S}{\partial t}$$

$$\frac{\partial \ln T}{\partial \ln P} = \nabla_T$$

- Boundary conditions:
 - Measured temperature
 - Evolution => Atmosphere model

Boundary condition: measuring the atmospheric temperature

★In principle, ARIEL could measure directly the temperature (as in SS)

★But:

- → Large uncertainties because you need to measure deep
- Link to the internal adiabat less direct for highly irradiated planets

Boundary condition: constraining thermal evolution

Boundary condition: constraining thermal evolution

Knowing the composition of the atmosphere significantly changes the inferred core mass

(Sub)stellar evolution equations

$$\frac{\partial r}{\partial m} = -\frac{1}{4\pi r^2 \rho}$$

$$\frac{\partial P}{\partial m} = -\frac{Gm(r)}{4\pi r^4}$$

$$\frac{\partial l}{\partial m} = \epsilon - T\frac{\partial S}{\partial t}$$

$$\frac{\partial \ln T}{\partial \ln P} = \nabla_T$$

- Boundary conditions:
 - Measured temperature
 - Evolution => Atmosphere model
- Equation of State (Composition)

Is the atmosphere representative of the envelope?

- ★Compared to Solar System giants:
 - ★Condensation is less of an issue!
 - ★ Probably no Helium separation!
 - ★We may have access to elemental abundances w/o relying on chemistry
- →Atmospheric composition should be similar to the gaseous envelope

 Although we cannot completely rule out inhomogeneities (Leconte et al. (2012), Vazan et al. 2016)

Lifting the envelope composition degeneracy

Testing interior model predictions

The « warm giant » opportunity

Testing interior model predictions

The « warm giant » opportunity

Thorngren et al. (2016)

Some conclusions

- We need to study the <u>atmosphere</u> to understand the <u>interior</u>
 - -Inferences from M-R measurements:
 - rely on many assumptions
 - show many degeneracies
- By lifting these degeneracies, ARIEL could be seen as a real interior characterization mission!!!
 - (although not to the extent of what is done in the Solar system)
 - Statistical comparison with interior model

Thank you