How known planets from the Solar System
would be seen if they were exoplanets
G. Gilli', P. Machado’

(1) Instituto de Astrofisica e Ciéncias do Espaco (lA), Portugal

Acknowledgment: European Union's Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant agreement No 796923"

/. i
. S/ ..n,;'
‘C\\\

instituto de astrofisica
e ciéncias do espaco

ARIEL Conference 2020,ESTEC, Noordwijk, 15/01/2020




CONTEXT:

ARIEL WG “Synergies with Solar System
planets Atmosphere”

Work in progress to test tools and provide
science cases for ARIEL

OUTLINE:

PART 1 (G.Gilli)
Modeling: Transit of exo-Venus observed by ARIEL

PART 2 (P.Machado):
Observations: High resolution spectra of Solar System bodies




Part 1:
Transit of exo-Venus

work-in-progress in collaboration with E. Marcq’
1. LATMQOS, Paris, France
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MOTIVATION:

More and more close-in-orbit hot terrestrial planets detected:
favorable targets for transmission spectroscopy

VENUS: good natural laboratory for those targets

Venus-like planets around M-stars: more favorable for detecting
molecular features during a transit

Trappist 1 exoplanet System: likely to host Venus-like planets

Possible presence of clouds and aerosols: observational
predictions more challenging

APPROACH:

1. Observed by Venus Express

2. State-of-the-art of (GCM)
developed at LMD

(“Realistic” templates of CO, and sulfur-bearing compound atmosphere)

Credits: Takagi+2019 G.Gilli @ ARIEL Conf. 2020, ESA/ESTEC, The Netherland 15/01/2020




Total density of upper haze aerosols From stellar/solar occultation
! measurements by Venus Express

Main cloud deck 48-75 km + tenuous
hazes up to ~90 km

Extinction coefficient lower at high latitudes
than at low latitudes

Haze extinction coefficients in the UV and
near IR can vary by one order of magnitude

Altitude [km]

Time scale variability ranging from

10" Extinction B [km-1] 10° L3 Wll uet et al 2009




Simulated transmission spectra of VENUS-like planets (previous works)

Venus transiting in front of the Sun Transit of Trappist 1 planets (Venus-composition)
(as seen from the Earth)

Altitude (km)

Relative Transit Depth [ppm]
r
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all features due to CO; unless noted
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Ehrenreich+2012 Wavelength (nm)

| 2 3 4 5 10) 15 20
Lincowski+2018 Wavelength (4) [um]

Lowest altitude possible to reach is set by the dominant
diffusion regime: Rayleigh or Mie

Absorption reaches ~ 25 ppm for CO, UV bands,

~15 ppm for CO, for most noticeable feature at 4.3 um

“Flat” spectra in presence of clouds
e (CO,feature dominated spectra, approaching 90 ppm
e Higher temperature and lower g — stronger features
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ASSUMPTIONS:
Transit observed by ARIEL
Trappist 1d is a Venus-analogue
Clouds and hazes mainly
composed of H,SO,
Tidally-locked planet
Sub-stellar lat/lon are set to the
center of the planet

Luginin+2016
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Transit depth of Exo-Venus observed by ARIEL
(work-in-progress...)
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Take-home messages

Trappist 1 system “too challenging” to detect with ARIEL: ~5000h transit
needed! (L.Mugnai, private communication).

intrinsic would significantly affect any
atmospheric retrievals

of clouds & haze in
exoplanetary atmospheres when interpreting ARIEL primary transit spectra

(relatively) “flat” transit depth also help constrain radii, composition and density
of upper hazes

Future works

Find another Venus-like analogue around other M-stars?
Quantify the impact of the variation of upper haze on transit depth

Check the sensitivity of predicted observable with the orbital characteristics of the
planets, and test other targets
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How planets from the Solar System would be seen if they were exoplanets
based on Solar System planets’ observations from high resolution ground-

.’nstrumen’t?, : e
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Venus at optical: HARPS-N /TNG, UVES /VLT, ESPaDONS/ CFHT

Venus at infrared: iISHELL and SPECS / IRTF

Venus spectra
(HARPS-N 28jan2017)
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Instituto de Astrofisica e Ciéncias do Espaco

Venus’s Y feature as a wind distorted wave

What is the Venus “Y” feature? |

In the 1960s, a huge dark cloud structure was
first observed on Venus through ultraviolet
images.

This feature with the shape of a “Y” has been
nhserved for manv decades nf spatial missions,

_A new type of wave distorted by Venus winds J

* We have deduced a new type of equatorial wave that only appears
in planets of slow rotation like Venus.

(1953) be a WAVE.

MARINER 10 PIONEER VENUS
(1974) (1979)
s

* This wave brings up an ultraviolet absorber commonly thought to exist
nieo venus exress below, and concentrates it at the cloud tops. This is why we see dark
. - regions in UV images of the “Y".

« After being created, the wave becomes gradually distorted by the
winds and adopts the “Y” shape until it is finally dissipated,

Peralta et al. 2015




Venus brilliance temporal variability in the infrared
IRTF, MaunaKea
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Jupiter as an exoplanet proxy

VLT — ESPRESSO
July 2019

CAHA — CARMENES
May 2019

ESPRESSO
14 Jun 2019
00h:45 LT (UTC-4)

1
ESPRESSO

10 Feb 2019
7h:15 LT (Dawn)







ESPRESSO / VLT, July 2019

Jupiter spectra

(ESPRESSO 22jul2019)
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Results - Jupiter
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Results - Jupiter
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Saturn: optical with UVES / VLT, infrared with CAHA / CARMENES

saturne
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Results - Saturn
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Jupiter Viewer Results

CARMENES — Calar Alto: Saturn and Jupiter
June 2019
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Saturn - CARMENES / CAHA

CARMENES Saturn 13th June 2017

w
=
c
=1
>
c
o
o
5
o
[~
<
x
2
T

| |

12674 12675 12676
Wavelength (Angstroms)

P.Machado@ ARIEL Conf. 2020, ESA/ESTEC, The Netherland 15/01/2020



| J LisBoA

UNIVERSIDADE
DE LISBOA

1 June 2018 - MY 34, Ls=185.2°

ZE0HE HITHE

IR absorption CDOD normalized to the reference pressure of 610 Pa (Pa/Pa)
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Mars Global dust storm
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Mars Express
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Mars with UVES/VLT Titan atmosphere

and CARMENES with UVES/VLT

UVES Mars 25th June 2018 - UVES Titan 21st June 2018
4 : : ; . . 1200 T T

Flux (Arbitrary

P.Machado@ ARIEL Conf. 2020, ESA/ESTEC, The Netherland 15/01/2020




Prospects and future work

Transit of Venus 2012 Earth seen from Venus (VIRTIS — Venus EXPRESS)
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Instituto de Astrofisica e Ciéncias do Espaco
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Venus Twilight Experiment
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Photometric profiles
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Transmission spectroscopy on Venus’ transit

4. Aureole Spectrum

The scan starting at 16:19 MDT taken while Venus was crossing onto the solar limb had the
brightest arc from which the spectrum could be extracted. The spectra in Figure [§ were produced
by averaging over the arc positions in the limb-justified data cube (top panel), the average off-
limb stray light spectrum was subtracted and the residual solar spectrum was divided (middle
panel), and a line spectrum was made by averaging over the spatial extent of the arc (bottom
panel). A synthetic spectrum given to us by Pascal Hedelt (Hedelt et all, 20TT) of the Venus model
atmosphere was resampled and convolved with the FIRS spectrograph profile determined from
laser measurements (Jaeggli, 2011) to produce the model spectrum shown in violet.
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Figure 3: The mean spectrum in the arc of Venus duning the scan starting at 16: 19 MDT.




Earth seen from Venus
Venus Express - VIRTIS




Atmospheres
Formation and evolution
Structure and composition

From Solar System
to Exoplanets
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