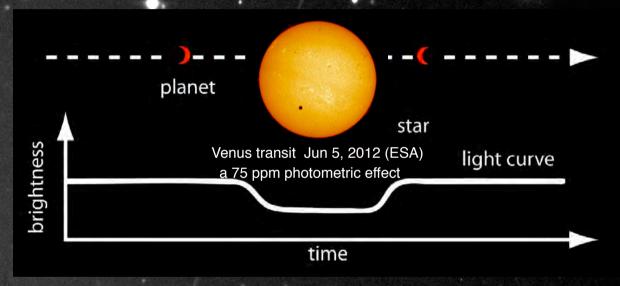


An exoplanet follow-up mission


Willy Benz, University of Bern, Switzerland on behalf of the CHEOPS Team

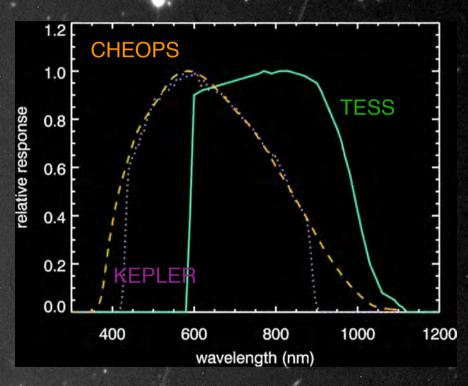
ESA's first S-mission ment of the size of planets goal orbiting bright stars /<12 stars already known to host targets planets otical: 400 to 1100 nm wavelength Ritchey-Chretien telescope effective aperture 30cm; F/5 optics. telescope FoV 17'x17' arc min. bus D&S design, 3-axis tabilised, nadir locked. spacecraft 5x1.5x1.5 m, 290 kg EO sun-synchronous, LTAN 6am, orbi 700km altitude selected: November 2012 adopted: February 2014 timeline launched: December 2019 operations: 3.5 years nominal

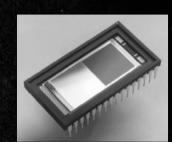
Kourou: 18.12.2019 (credit: Arianespace)

CHEOPS

Transits of super Earth-size

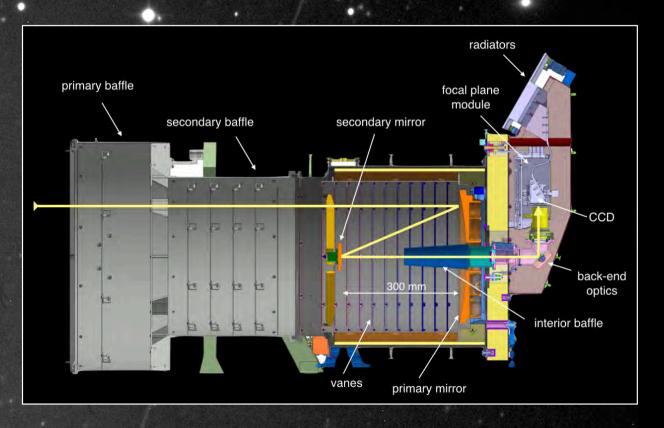
Transits of Neptune-size planets


1) planets around G5 dwarfs of V < 2) around K dwarfs of V < 12 and


January 12: CHEOPS as Seelings in the SAINTEEX to botic first left scope located at the National Astronomical Observatory of Mexico at San Pedro Martir estimated visual magnitude: ~ 8.4

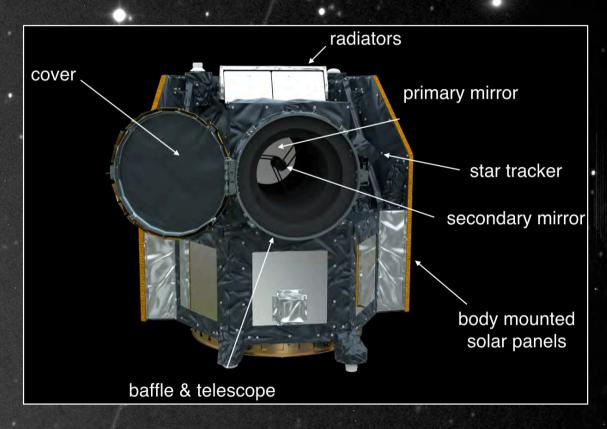
CHEOPS ESA's first S-mission

ESAS 11151 3-1111551011	
goal	measurement of the size of planets orbiting bright stars
targets	V<12 stars already known to host planets
wavelength	optical: 400 to 1100 nm
telescope	Ritchey-Chretien telescope, effective aperture 30cm, F/5 optics, FoV 17'x17' arc min.
spacecraft	Airbus D&S design, 3-axis stabilised, nadir locked. 1.5x1.5x1.5 m, 290 kg
orbit	LEO sun-synchronous, LTAN 6am, 700km altitude
timeline	selected: November 2012 adopted: February 2014 launched: December 2019 operations: 3.5 years nominal



1k x 1k Frame-transfer CCD, e2v CCD47-20, AIMO

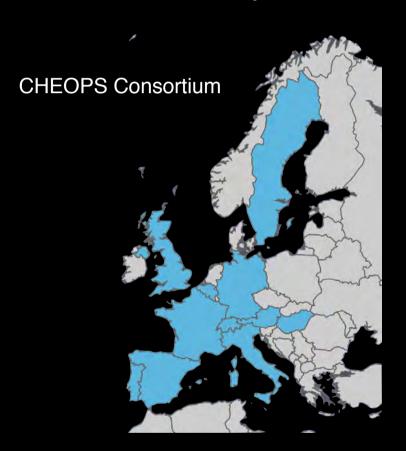
CHEOPS ESA's first S-mission	
goal	measurement of the size of planets orbiting bright stars
targets	V<12 stars already known to host planets
wavelength	optical: 400 to 1100 nm
telescope	Ritchey-Chretien telescope, effective aperture 30cm, F/5 optics, FoV 17'x17' arc min.
spacecraft	Airbus D&S design, 3-axis stabilised, nadir locked. 1.5x1.5x1.5 m, 290 kg
orbit	LEO sun-synchronous, LTAN 6am, 700km altitude
timeline	selected: November 2012 adopted: February 2014 launched: December 2019 operations: 3.5 years nominal



CHEOPS ESA's first S-mission measurement of the size of planets goal orbiting bright stars V<12 stars already known to host targets planets wavelength optical: 400 to 1100 nm Ritchey-Chretien telescope, effective aperture 30cm, F/5 optics, telescope FoV 17'x17' arc min. Airbus D&S design, 3-axis stabilised, nadir locked. spacecraft 1.5x1.5x1.5 m, 290 kg LEO sun-synchronous, LTAN 6am, orbit 700km altitude selected: November 2012 adopted: February 2014 timeline launched: December 2019

operations: 3.5 years nominal

CHEOPS ESA's first S-mission measurement of the size of planets goal orbiting bright stars V<12 stars already known to host targets planets optical: 400 to 1100 nm wavelength Ritchey-Chretien telescope, effective aperture 30cm, F/5 optics, telescope FoV 17'x17' arc min. Airbus D&S design, 3-axis stabilised, nadir locked. spacecraft 1.5x1.5x1.5 m, 290 kg LEO sun-synchronous, LTAN 6am, orbit 700km altitude selected: November 2012 adopted: February 2014 timeline launched: December 2019 operations: 3.5 years nominal


CHEOPS ESA's first S-mission measurement of the size of planets goal orbiting bright stars V<12 stars already known to host targets planets optical: 400 to 1100 nm wavelength Ritchey-Chretien telescope, effective aperture 30cm, F/5 optics, telescope FoV 17'x17' arc min. Airbus D&S design, 3-axis stabilised, nadir locked. spacecraft 1.5x1.5x1.5 m, 290 kg LEO sun-synchronous, LTAN 6am, orbit 700km altitude selected: November 2012 adopted: February 2014 timeline launched: December 2019 operations: 3.5 years nominal

CHEOPS: an ESA small mission

- •ESA S-class missions approved by SPC in 2011 and first call issued in February 2012
- Requirements
 - · Scientific excellence in any area
 - Cost
 - Total cost < 150 M€
 - Cost to ESA: not to exceed 50 M€
 - Schedule
 - Developed and launched within 4-5 years
- CHEOPS selected in 2012 as a Partnership with Switzerland with important contributions from 10 other members states

The mission has been launched within schedule and allocated budget

11 countries + ESA

The CHEOPS organisation

Joint overall lead: ESA - Switzerland

Consortium: institutes from 11 countries

SOC

MOC

- Switzerland
 Payload system
 engineering & AIT
 telescope structure
- Germany
 Focal Plane
 Assembly
- Switzerland
 Operations
 Data products
- Sweden data simulator
- Spain
 Mission Operations
 Center

Austria
DPU, PSDU
flight software

France

Software

Quick look

WUK

Data Reduction

Italy optical system

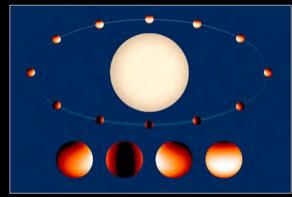
Belgium

baffle

Mission Planning, Archive, & Data Reduction Software

- launching state
- platform procurement
- launch services
- CCD
- space debris service

New approach to mission development had to be implemented to allow meeting schedule and budget requirements

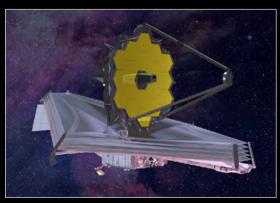

CHEOPS Science

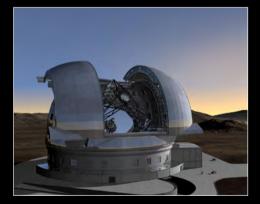
defined by the CHEOPS science team

accurate sizing: M/R relation

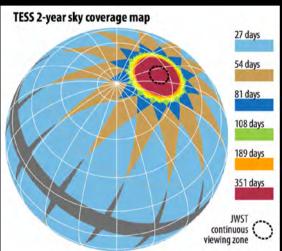
Atmospheres: phase curves

Exomoons, rings, etc.

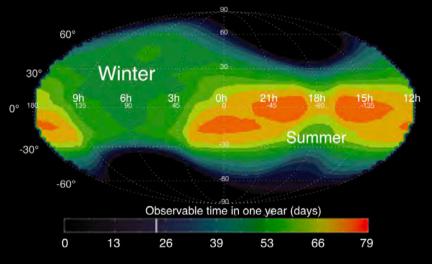



Discovery and masses

Golden targets for future facilities

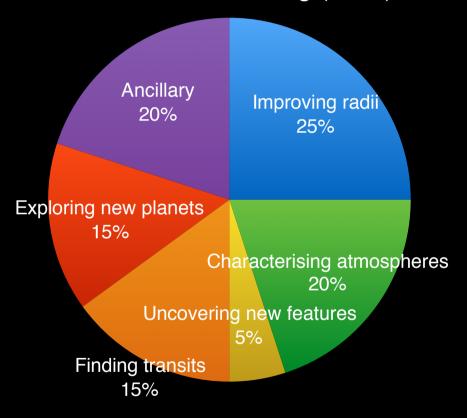


+ 20% open time



CHEOPS-TESS Synergy: CHESS

targets:
planets orbiting bright stars
sky coverage:
bright stars are everywhere



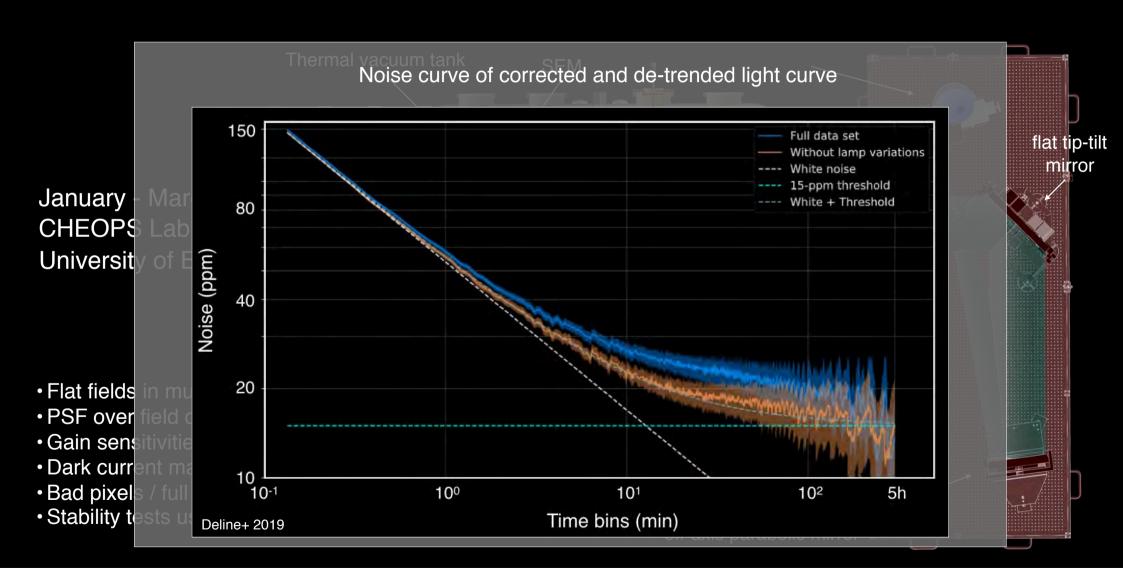
Complementary in science goals and sky coverage!

Science programme: 2 pillars

Garanteed time observing (GTO): 80%

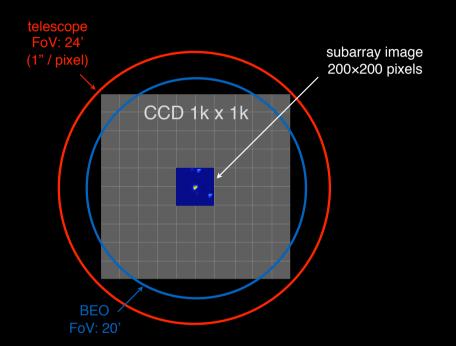
Defined by the CHEOPS Science Team (proprietary time: ~1 year)

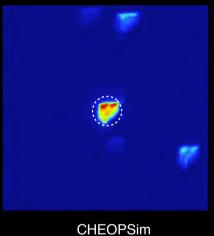
Guest observing (GO): 20%

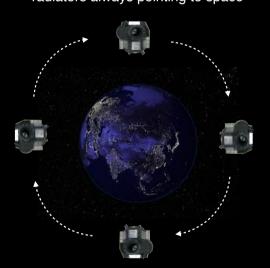

- · Open to all
- Two options for obtaining time:
 - 1. yearly ESA call for proposals (AO); selection on scientific merit by ESA appointed TAC
 - 2. director's time (DT, up to 25% of GO), will start after launch with a focus on new targets; proposals selected by ESA Director of Science
- Result of first AO: https://www.cosmos.esa.int/web/cheops-guest-observers-programme/ao-1-programmes
- Next AO: TBD (probably autumn 2020)

get more infos at:

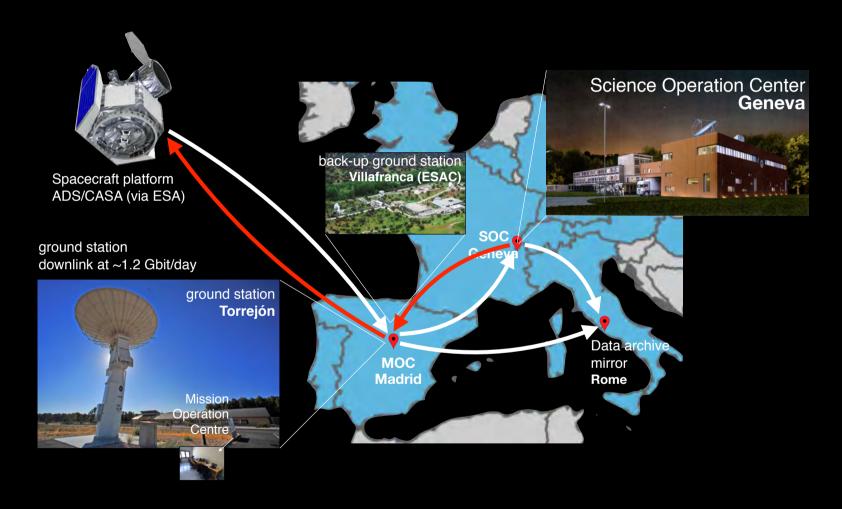
https://www.cosmos.esa.int/web/cheops-guest-observers-programme and poster at this conference


Defined by the community (proprietary time: ~1 year)



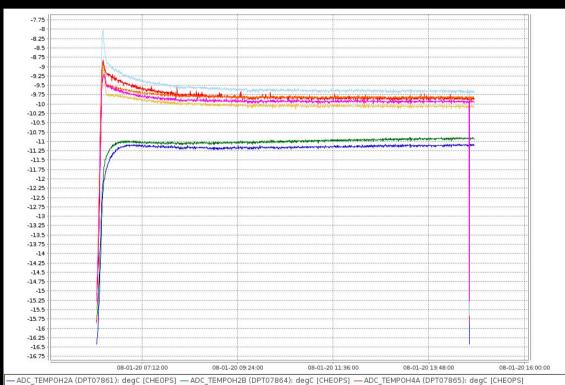

Data acquisition

Defocused image 90% of energy in 24 px S/C jitter 4" rms


sun-synchronous polar orbit measuring overnight side radiators always pointing to space

The field is rotating around the target star because CHEOPS is nadir-locked

Data acquisition



Latest news

 Launch and Early Orbit Phase (LEOP) concluded successfully

- January 8: Beginning of in-orbit commissioning
 - Instrument switched on successfully, health-check passed
 - telescope temperature stabilisation successfully achieved

-ADC_TEMPOH2A (DPT07861): degC [CHEOPS] — ADC_TEMPOH2B (DPT07864): degC [CHEOPS] — ADC_TEMPOH4A (DPT07865): degC [CHEOPS]
-ADC_TEMPOH1B (DPT07862): degC [CHEOPS] — ADC_TEMPOH3A (DPT07863): degC [CHEOPS] — ADC_TEMPOH3B (DPT07866): degC [CHEOPS]
-ADC_TEMPOH4B (DPT07867): degC [CHEOPS]

Latest news

January 9:

- First dark (cover closed) image taken and successfully transmitted to ground station
- January- March
 - In-orbit calibration of CCD and read-out electronics
 - opening of the cover
 - Testing all requirements, determining performances
- ~ April 1
 - Nominal start of science operation

