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Stellar activity as noise

. Photospheric starspots have small

contribution to light variations in the IR regime

. Flares are also more prominent at shorter 12 é(b) . 53620-53623 ]
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Flare of an M-dwarf in multiple passbands



« A possible problem: with transit spectroscopy the removed spectral
source Is the whole stellar disk, but different activity contribution can

cause contamination even in IR regime

The Transit Light Source Effect

Spectral Difference due to
Pre-transit Stellar Disk is the Different Spot/Faculae

Assumed Light Source Contributions Contaminates
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| Actual Light Source is the Chord
Defined by the Planet’s Projection

Rackham, Apai, Giampapa 2018



. A possible problem: with transit spectroscopy the removed spectral

source is the whole stellar disk, but different activity contribution can

cause contamination even in IR regime S Coneninaton Specira Produed by SpoiesFaiae Models
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ARIEL & stellar activity

. Magnetic activity is an important property of

young, fast-rotating stars

. This can have serious consequences on their

exoplanets

What remains to study for later stages

of star/planetary system evolution?

Rotation (age) vs.
X-ray luminosity
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ARIEL & stellar activity

. Magnetic activity is an important property of
young, fast-rotating stars

. This can have serious consequences on their
exoplanets

. SOome models already exist discussing the
effects of activity on planets, but not much is
known on the additive effects and

observational confirmation is also missing
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(Segura et al. 2010)



ARIEL & stellar activity

. I1he interaction of exoplanets and stellar
magnetism is crucial for planetary evolution
and for the search for life

. Can the system harbor life on long term?

(first signs of life on Earth dates back to 4Gyr,

Artist Rendition of Solar Wind
C

although complex life based on eukaryotic

cells took much longer time to form)




ARIEL & stellar activity

High resolution photometry can bbe crucial for
fast transients — e.g. determining flare
parameters: energy estimation depends
heavily on sampling! - fast photometry

available with ARIEL seems promising...

Flare analysis with machine learning on Kepler light
curves: energy estimation of long cadence events can be

nasty...
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ARIEL & stellar activity

-2.0 : \
There could be several smaller i
,1‘5_5 -0.04 §
events (microflares) that we are [ oo
missing, that we see e.g. on the SRRSOV O
£ E
Sun :
=00 =
QOi : ’J |
74.90 I | I ‘ 74.95 ‘ I I | 75.00

JD—-2457738



Ground test for fast photometry

. AD Leo (B~10™, M3V)

B filter (target will be fainter, but larger flare amplitudes)

« 0.3s exposures - ~0 readout time
. 3 weeks of observing time (10 usable nights)
. 600.000 data points
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What do we gain/lose with longer exposures?
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* Interestingly the equivalent duration (ED) of even
the 3-min cadence is within ~1% of the original
* significant amount of the ED is coming from the

decay phase
* timing could be crucial!
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for this event we get the same
energy (within few %) up to 4
min cadence!
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Of course for smaller events short

exposures are more important:
0.4 1 for the flares in this test the optimal bin
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What did we learn?

. For the few observed events 0.5-5 min cadence is enough
BUT
. Small events were not detected due to higher noise level

(telescope/atmosphere/camera limitations)



What is the smallest detectable flare with ARIEL?

For this test we:

102_
. sampled artificial flares with a realistic energy o
distrubution; .

. added them to light curves of ARIEL targets; oo me 2

. added Gaussian noise based on expected count rates

Flare amplitude: 0.01™, Flare energy: 2.398832919020682e+ 31erg, Luminosity: 0.34 Ls,,, V mag: 7.65

(as /N Poisson noise) of the stars with . ST

454000

10Hz readout;

£
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. Checked if the event is detectable witha =

448000

20 limit




. For solar-like we expect to see only
mainly the strongest eruptions
. For M-dwarfs we can probably : :
observe even smaller events with S
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Quick check of TESS data of ARIEL targets:

. ~350 targets

. ~130 short cadence light curve, 160 full-frame image data (with some overlap
in targets)

. only a handful small flares -> the main science is probably not in danger
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Conclusion

. For solar-like targets flares probably won't affect ARIEL's main
science (but we don't know much about flare behaviour in IR yet)
. We can learn a lot about late-type targets: weaker, earlier unseen

events can be detected with fast photometry
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