A Correlation on Stellar Flares detected with MAXI -Quiescent Luminosity vs. Flare Energy-

Ryo Sasaki

Y. Tsuboi, S. Katsuda, K. Yabuki, Y. Nakamura

Y. Sugawara, M. Matsuoka and MAXI team

Back ground

- What is stellar/solar flares?
- About MAXI (Monitor of All-sky X-ray Image).
- Quiescent X-ray emissions and

flare occurrence rate distribution.

Result

- A relation of $E_{tot,max}$ and $L_{x,q}$

Discussion

- Prediction of the flare occurrence rate from $L_{x,q}$.

Back ground

- What is stellar/solar flares?
- About MAXI (Monitor of All-sky X-ray Image).
- Quiescent X-ray emissions and

flare occurrence rate distribution.

Result

- A relation of $E_{tot,max}$ and $L_{x,q}$

Discussion

- Prediction of the flare occurrence rate from $L_{x,q}$.

This is the Solar Flare

Stellar X-ray emissions -Flare state-

Stellar X-ray emissions -Flare state-

Back ground

- What is stellar/solar flares?
- About MAXI (Monitor of All-sky X-ray Image).
- Quiescent X-ray emissions and

flare occurrence rate distribution.

Result

- A relation of $E_{tot,max}$ and $L_{x,q}$

Discussion

- Prediction of the flare occurrence rate from $L_{x,q}$.

MAXI (Monitor of All-sky X-ray Image)

MAXI have detected many stellar flares.

Kind of Flare stars

RS CVn and Algol type

- Close binary
- rotation period = orbital period
- Have active dynamos

dMe and dKe type stars

- d: dwarf
- M, K : spectral type
- e: Hα emission line
- fast rotation velocity (v sin I > 10 km/s)

Young Stellar Objects

- Early stage of evolution
- Have a accretion disk

Energy Histogram of MAXI detections

106 stellar flare from **27** stars have been detected with MAXI. (2009 August - 2016 November)

Back ground

- What is stellar/solar flares?
- About MAXI (Monitor of All-sky X-ray Image).
- Quiescent X-ray emissions and

flare occurrence rate distribution.

Result

- A relation of $E_{tot,max}$ and $L_{x,q}$

Discussion

- Prediction of the flare occurrence rate from $L_{x,q}$.

Stellar X-ray emissions -Quiescent state-

©NAOJ

Quiescent X-ray emissions mainly come from spots.

Stellar X-ray emissions -Quiescent state-

©NAOJ

Quiescent X-ray emissions mainly come from spots.

Flare ↔ spots ↔ Quiescent

Back ground

- What is stellar/solar flares?
- About MAXI (Monitor of All-sky X-ray Image).
- Quiescent X-ray emissions and

flare occurrence rate distribution.

Result

A relation of E_{tot,max} and L_{x,q}

Discussion

- Prediction of the flare occurrence rate from $L_{x,q}$.

Result of fitting by power-law

[†]The energy of the

Result of fitting by power-law

[†]The energy of the

- E_{tot,max} in 7.25 years can be predicted from L_{x,q}.
- $E_{tot,max} \propto L_{x,q}^{1.26}$ holds regardless of the age and the temperature.

Back ground

- What is stellar/solar flares?
- About MAXI (Monitor of All-sky X-ray Image).
- Quiescent X-ray emissions and

flare occurrence rate distribution.

Result

- A relation of E_{tot,max} and L_{x,q}

Discussion

- Prediction of the flare occurrence rate from $L_{x,a}$.

Prediction of Flare Occurrence Rate

$$\begin{cases}
\frac{1}{7.25 years} (E \ge E_{tot, \text{max}}) = A \cdot E_{tot, \text{max}}^{-1.0} \\
E_{tot, \text{max}} = 10^{-2.04} L_{x,q}^{1.26}
\end{cases}$$

Prediction of Flare Occurrence Rate

$$\begin{cases}
\frac{1}{7.25 years} (E \ge E_{tot, \text{max}}) = A \cdot E_{tot, \text{max}}^{-1.0} \\
E_{tot, \text{max}} = 10^{-2.04} L_{x,q}^{1.26}
\end{cases}$$

$$A = 7.58 \times 10^{34} \times \left(\frac{L_{x,q}}{10^{30} \, \text{erg s}^{-1}}\right)^{1.26}$$

$$\begin{cases} \frac{1}{10^{30}} & \frac{1}$$

We are able to predict the flare occurrence rate distribution from the L_{v a}

Summary

- MAXI have detected 106 flares from 27 stars in 7.25 years.
- $L_{x,q}$ and $E_{tot,max}$ had a positive correlation ($E_{tot,max} \propto L_{x,q}^{1.236}$).
- We can predict the flare occurrence rate distribution by $L_{x,\alpha}$.

Prospect

- Understand the activity cycle for individual stars.
- Correct more samples to expand the correlation.