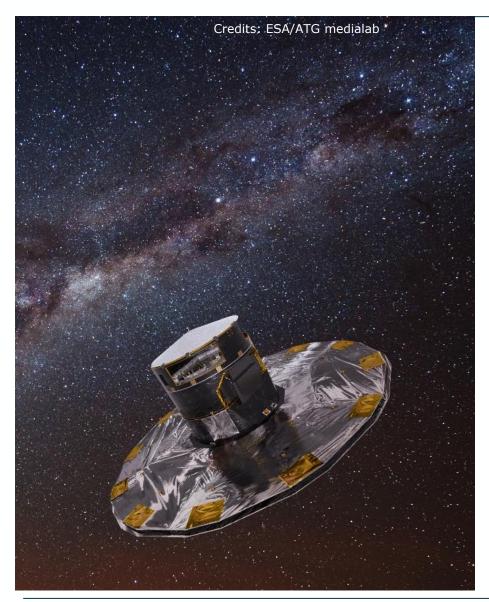


Gaia in ESA Datalabs: Exploiting large catalogues at scale

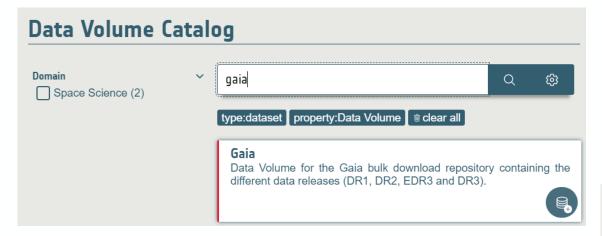
Enrique Utrilla Molina, Aurora Technology for ESA/ESAC

ESA Datalabs 2022 workshop


24/11/2022

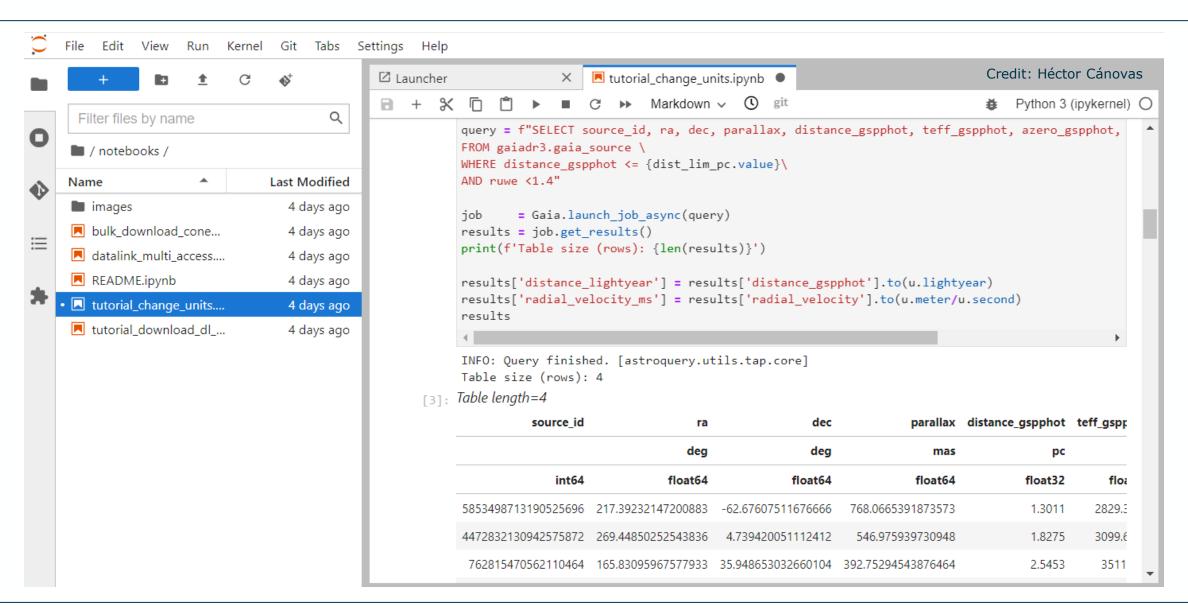
ESA UNCLASSIFIED – For ESA Official Use Only

The Gaia mission



- Launched in 2013
- Orbiting L2
- Largest and most accurate astrometric and photometric survey to date (~1800 millions of sources in DR3)
- Largest ever low resolution spectroscopy survey (~220 million)
- Largest ever radial velocity survey (~34 million)
- Lots of derived data:
 - Astrophysical parameters
 - Variability
 - Binaries
 - Quasars and Galaxies
 - Asteroids
 - •
- More papers are being written based on Gaia than in Hubble

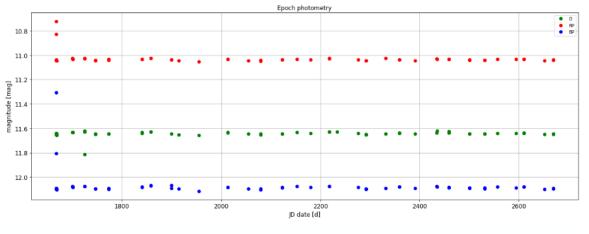
Gaia resources in ESA Datalabs

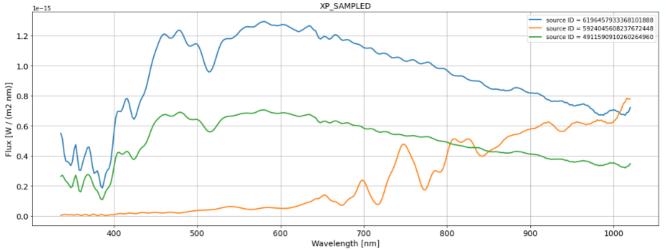

- Direct access to all released Gaia data
- Compressed CSV or ECSV format
- DR1, DR2, EDR3 and DR3

- Dedicated datalab for Gaia based on JupyterLab
- Tutorials notebooks
- Preconfigured with additional Gaia-specific utilities

jl-gaia Datalab: astroquery.gaia TAP

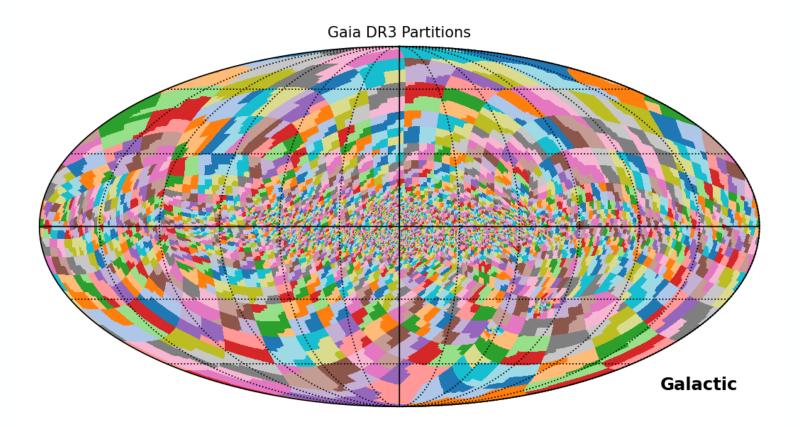
jl-gaia Datalab:astroquery.gaia DataLink




```
[5]: retrieval_type = 'ALL'  # Options are: 'EPOCH_PHOTOMETRY', 'MCMC_GSPPHOT', 'MCMC_MSC', 'XP_SAM
    data_structure = 'INDIVIDUAL'  # Options are: 'INDIVIDUAL', 'COMBINED', 'RAW'
    data_release = 'Gaia DR3'  # Options are: 'Gaia DR3' (default), 'Gaia DR2'

datalink = Gaia.load_data(ids=results['source_id'], data_release = data_release, retrieval_type=retrie
    dl_keys = [inp for inp in datalink.keys()]
    dl_keys.sort()

print()
print(f'The following Datalink products have been downloaded:')
for dl_key in dl_keys:
    print(f' * {dl_key}')
```


Credit: Héctor Cánovas

Direct file access

The complete Gaia catalogue files are directly accessible from ESA Datalabs

Most DR3 tables are partitioned following the same schema of contiguous <u>HEALPix</u> level 8 ranges

Similar number of entries in gaia_source, may not be homogeneous in other tables

Direct file access

source_id random_index ref_epoch

[1]:	<pre>run "~/notebooks/libraries/gaia_utils.py"</pre>	Load utilities	
[2]:	<pre>dr3 = get_gaia_utils("DR3") dr3.set_gaia_volume("/home/media/data/user/gaia")</pre>	Set Gaia volume	
[3]:	<pre>partitions = dr3.cone_search_partitions(14.2, 28.8) partitions</pre>	Spatial query	
[3]:	Using default radius value: 1.0 arcsec		
[4]:	<pre>files = dr3.get_files(partitions) files</pre>	Find file paths	
[4]:	['/home/media/data/user/gaia/gdr3/gaia_source/GaiaSource_034570-036209.csv.gz']		
[5]:	<pre>%%time data = dr3.load_file(files[0])</pre>	Load data from file	
	CPU times: user 1min 43s, sys: 7.19 s, total: 1min ! Wall time: 1min 51s	51s	

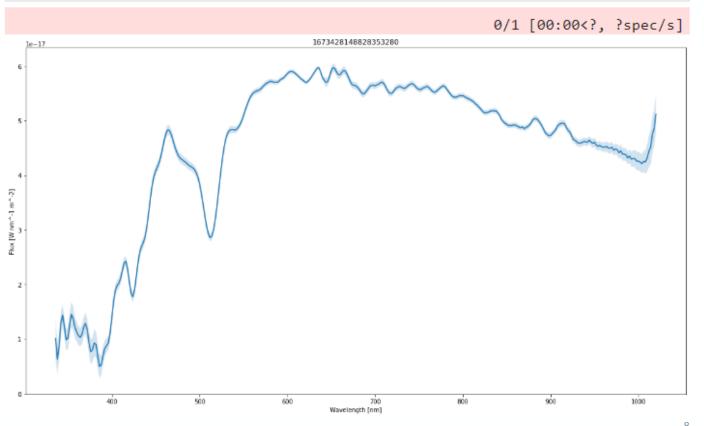
[6]: data
[6]: Table length=536396

designation

solution_id

	yr				
	float64	int64	int64	str27	int64
27.	2016.0	628370977	304080935778333056	Gaia DR3 304080935778333056	1636148068921376768
27.5	2016.0	1651938970	304080935778333184	Gaia DR3 304080935778333184	1636148068921376768
27.5	2016.0	792769992	304080935778336000	Gaia DR3 304080935778336000	1636148068921376768
27.	2016.0	1489924736	304080935778339072	Gaia DR3 304080935778339072	1636148068921376768
27.5	2016.0	1431357637	304081008792792832	Gaia DR3 304081008792792832	1636148068921376768
27.5	2016.0	72989943	304081008793232000	Gaia DR3 304081008793232000	1636148068921376768
27.	2016.0	231103464	304081073217310336	Gaia DR3 304081073217310336	1636148068921376768
27.	2016.0	67591202	304081107577050752	Gaia DR3 304081107577050752	1636148068921376768

GaiaXPy



- XP (low resolution) spectra in DR3:
 - ~220 million continuous mean spectra
 - Internally calibrated
 - Coefficients of Hermite functions
 - Encoded in pseudo-wavelengths
 - ~35 million sampled mean spectra
 - Subset of continuous spectra
 - Externally calibrated
 - W/m2 per nm

GaiaXPy is a tool to calibrate and change the sampling of the continuous spectra as needed https://gaia-dpci.github.io/GaiaXPy-website/

```
from gaiaxpy import calibrate, plot_spectra
import numpy

source_ids=["1673428148828353280"]
calibrated_df, sampling = calibrate(source_ids, save_file=False)
plot_spectra(calibrated_df, sampling=sampling, multi=False, show_plot=True)
```


Gaia DR3 contents (selected tables, compressed CSV format)

Table	Rows	Size
gaia_source	1,811,709,771	757 GB
astrophysical_parameters	1,590,932,717	258 GB
astrophysical_parameters_supp	473,020,612	202 GB
mcmc_samples_gsp_phot	449,297,716	3.3 TB
mcmc_samples_msc	348,711,151	1.4 TB
xp_continuous_mean_spectra	219,197,643	3.7 TB
xp_sampled_mean_spectra	34,468,373	115 GB

Total DR3 size ~8.9 TB, and DR4 expected to be much bigger

Work smarter, not harder...

- Work with smaller datasets:
 - Filter by position/partition or some other parameter
 - Random sampling of the sources:
 - random_index column in gaia_source
- Don't use "select *"

Use gaia_source_lite if possible

But sometimes full table scans over the whole dataset (or al large part of it) are needed...

...or work smarter AND harder

- Quantity sometimes is a quality on its own:
 - Very detailed histograms and statistics
 - Detection of outliers that are not so random
 - Machine Learning
 - •

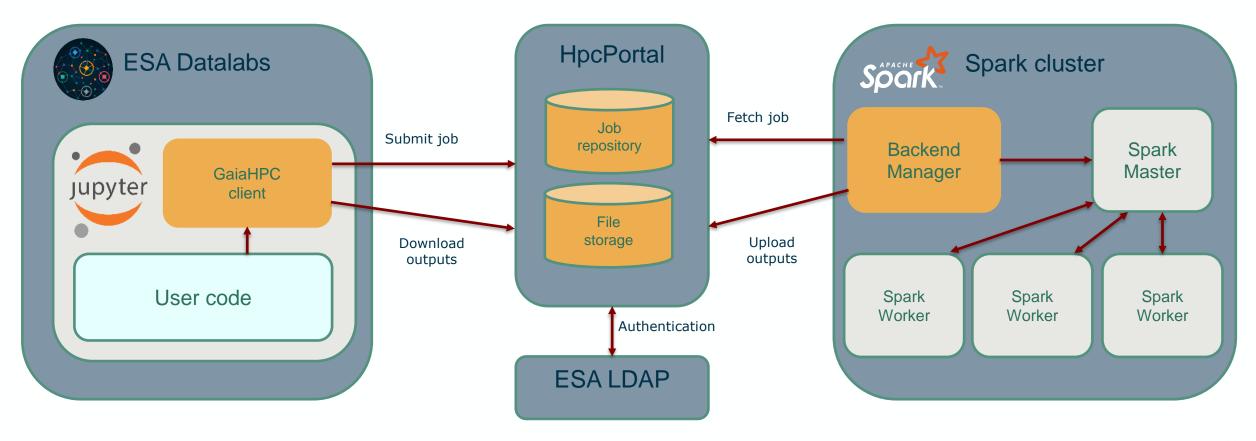
For large workloads, vertical scaling is not enough → parallelization

Nevertheless, brute force is not a substitute for algorithm optimization

A glimpse into the future

Apache Spark: Large scale analytics

- In Gaia, we use an Spark cluster (among other tools) for validation of the catalogue data
 - 2 clusters (PRE & OPS) with ~340 CPU cores each, with JupyterLab frontend

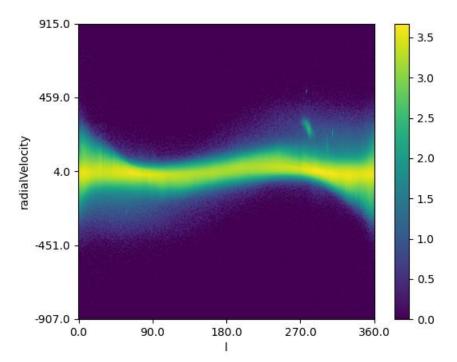

- Open source
- Automatic distributed processing over a large number of processing nodes
- APIs for Java, Scala, Python and R
- ANSI SQL-compatible
- Different storage formats: CSV, JSON, ORC, Parquet, ...
 - Recommended: Parquet

GaiaHPC: Architecture

Delegate computations to an external backend, e.g. an Apache Spark cluster **Proof of Concept**: Not yet released in the public Gaia datalab template

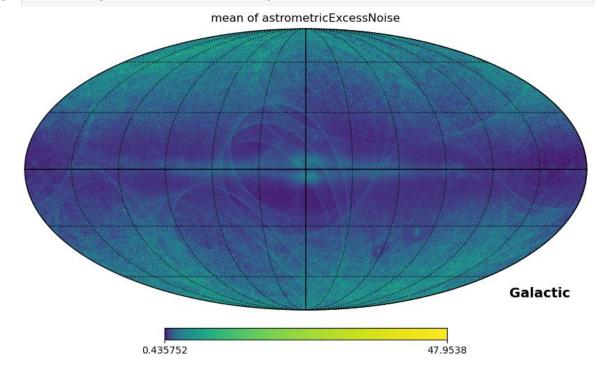
GaiaHpc: SQL query on Spark


```
from gaiahpc import GaiaHpcClient
     client = GaiaHpcClient("eutrilla")
     Password for user eutrilla: .....
    output_files = client.sql("""
     SELECT COUNT(*)
     FROM gaiadr3.gaiasource
     WHERE photGMeanMag <= 18.25
           AND hasMcmcMsc = true
     output_files
     2022/11/21 15:12:38 - Created job 44
     2022/11/21 15:12:43 - Status: RUNNING
     2022/11/21 15:13:58 - Status: FINISHED
     2022/11/21 15:13:58 - Found 1 files:
     2022/11/21 15:13:58 - - Downloaded /media/user/Job_44/queryResult.csv
     2022/11/21 15:13:58 - Job 44 deleted from the server
     2022/11/21 15:13:58 - Operation completed in 0:01:20.188377
[3]: ['/media/user/Job_44/queryResult.csv']
```


■ GaiaHpc.ipynb X		□ queryResult.csv	×				
Delimiter: , 🗸							
	count(1)						
1	348630727						

GaiaHpc: Other types of jobs

DensityMap


[5]: client.run(densityMap)

Operation completed in 0:04:30.417462

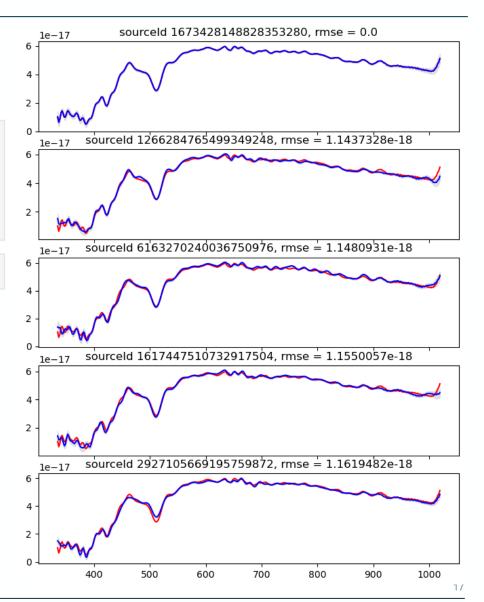
HealpixMap

[9]: client.run(excessNoiseDistribution)

Operation completed in 0:04:10.421384

GaiaHpc: Other types of jobs

SimilarSpectra

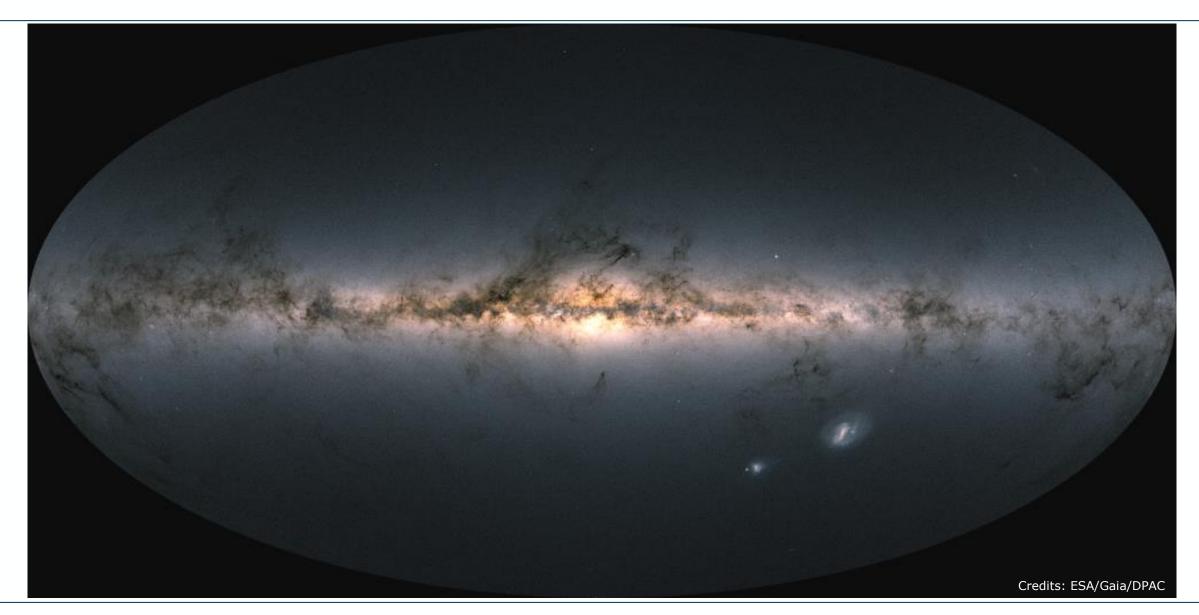

```
[12]: client.run(similarSpectra, inputs={"my_prototype":"./prototype.csv"})
```

Operation completed in 0:02:35.290411

Blue: spectrum

Red: reference prototype

The first spectra found is identical to the prototype: In this example, the prototype was downloaded from an existing source, so it has successfully found the original source


Summary

- ESA Datalabs provides a collaborative platform to bundle together:
 - 3rd party libraries
 - Our own tools and scripts
 - Tutorials
 - User code
- It supports the tools for all preferences:
 - JupyterLabs + astropy/astroquery
 - But also other tools such as Topcat
- Can be extended to tap into large-scale data processing platforms

Questions?

