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ABSTRACT   

Euclid is an ESA Cosmic Vision wide-field space mission concept dedicated to the high-precision study of Dark Energy 
and Dark Matter. The mission relies on two primary cosmological probes: Weak gravitational Lensing (WL) and Baryon 
Acoustic Oscillations (BAO). 

The first probe requires the measurement of the shape and photometric redshifts of distant galaxies. The second probe is 
based on the 3-dimensional distribution of galaxies through spectroscopic redshifts. Additional cosmological probes are 
also used and include cluster counts, redshift space distortions, the integrated Sachs-Wolfe effect (ISW) and galaxy 
clustering, which can all be derived from a combination of imaging and spectroscopy. 

Euclid Imaging Channels Instrument of the Euclid mission is designed to study the weak gravitational lensing 
cosmological probe. The combined Visible and Near InfraRed imaging channels form the basis of the weak lensing 
measurements. The VIS channel provides high-precision galaxy shape measurements for the measurement of weak 
lensing shear. The NIP channel provides the deep NIR multi-band photometry necessary to derive the photometric 
redshifts and thus a distance estimate for the lensed galaxies. 

This paper describes the Imaging Channels design driver requirements to reach the challenging science goals and the 
design that has been studied during the Cosmic Vision Assessment Phase.  

Keywords: Euclid, Dark Energy, Weak Lensing, System Architecture 
 

1. INTRODUCTION  
Euclid is one of the 3 remaining candidates of ESA cosmic vision program, among which 2 missions will be selected 
next year for a launch scheduled in 2017/2018. The primary goal of this mission is to map the geometry and evolution of 
the dark universe with unprecedented precision in order to place high accuracy constraints on Dark Energy, Dark Matter, 
Gravity and cosmic initial conditions1. This mission will use two independent cosmological probes: weak gravitational 
lensing (WL) and baryonic acoustic oscillations (BAO). 
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For this purpose, Euclid will measure the shape and spectra of galaxies over the entire extragalactic sky in the visible and 
Near Infrared, out to redshift 2, thus covering the period over which dark energy accelerated the universe expansion (<10 
Billion years). 
The payload baseline comprises wide field instruments (0.5 deg2): an imaging instrument comprising a visible and a NIR 
channel, and a NIR spectroscopic instrument. The visible channel is used to measure the shapes of galaxies for weak 
lensing, with a resolution of 0.18 arcsec in a wide visible red band (R+I+Z, 0.55 to 0.92 µm). The NIR photometric 
channel provides three NIR bands (Y, J, H, spanning 1.0 to 2.0 µm) with a resolution of 0.300 arcsec. 
The baseline for the NIR spectroscopic channel operates in the wavelength range 1.0 to 2.0 µm in slitless mode at a 
spectral resolution R=500, employing 0.500 arcsec pixels. 

With this capability, the Euclid imaging instrument will contribute to the four Euclid primary science objectives in 
fundamental cosmology: (1) Euclid will measure the dark energy equation of state parameters w0 and wa to a precision of 
2% and 10% from the geometry and structure growth of the Universe. Euclid will thus achieve a Dark Energy Figure of 
Merit of 500 (1500) without (with) Planck Priors, thus improving by a factor of 50 (150) upon current knowledge. (2) 
Euclid will test the validity of General Relativity against modified gravity theories, and measure the growth factor 
exponent to an accuracy of 2%. (3) Euclid will study the properties of dark matter by mapping its distribution, testing the 
Cold Dark Matter paradigm and measuring the sum of the neutrino masses to a few 0.01 eV in combination with Planck. 
(4) Euclid will improve the constraints on the initial condition parameters by a factor of 2-30 compared to Planck alone.  

2. WEAK LENSING SURVEY KEY PARAMETERS 
Probing dark energy and dark matter through weak lensing measurements requires to study the galaxy shapes spatial 
correlation induced by gravitational lensing. Deflection of light by the integrated mass distribution along the observer 
line of sight causes slight modifications of the distant galaxies image shapes. This effect is clearly visible in the case of 
strong gravitational lensing, when the mass density in a lens is above a critical threshold, the appearance of the 
background object is highly distorted with a characteristic pattern (see figure 1). 

 
Figure 1. Illustration of strong gravitational lensing effects (Abell Cluster 2218 - W. Couch et al., 1975 – HST). 

In the weak lensing regime that we are probing on large scale structures, the shear induced by gravitational effects on the 
large majority of objects is very faint. Typical variation of the original object ellipticity is of the order of magnitude of 
1% and need to be measured with even higher accuracy (error 0.01%). 

In order to measure shape parameters with accuracy on galaxies of typical size 0.3 to 0.4 arcsec, the galaxies are best 
observed in visible, that ensure accurate resolution (for a given telescope resolution scales as λ) and high sensitivity at 
peak emission of galaxy (bulge+disk). A single visible waveband is used on Euclid, extended toward the red-end of 
visible spectrum (R+I+Z, 550-920 nm) in order to match galaxy spectrum of redshifted galaxies. As most of the galaxies 
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observed will be small, the shape measurement is achievable with adequate sampling using a 0.100 arcsec visible pixel 
platescale. 

The data processing that allows measurement of the shape parameters, and especially the ellipticity of the galaxy, with 
the accuracy required for weak lensing is challenging and not defined yet. But whatever the method, it will require 
exquisite a priori knowledge of the image degradation process introduced by the instrument in order to correct the final 
image blurred by the Point Spread Function of the imaging system (optics, satellite jitter, detector), with various noise 
contributions and detector Charge Transfer Inefficiency trailing effects (see figure 2 for illustration of those effects on a 
galaxy). 

To recover the shear information, the Point Spread Function is needed at galaxy location but will be measured on stars 
available from the observed field. Since instrument PSF varies on spatial scales of the field of view, and with time, it is 
necessary to calibrate the PSF model with stars surrounding the studied galaxies. Star images are pixelised and noisy, 
and their sampling is worse than for the galaxies (typical system PSF size is 0.200 arcsec). The content of information 
required for PSF calibration and interpolation can only be obtained by combining the information from several PSF 
(typically 50 stars). This fixes the constraints on the intrinsic ellipticity of the system PSF (ellitpicity in terms of 
weighted quadrupoles shall be < 10%) and on its stability on small field scales (stability over 50 arcmin² shall be better 
than 2.0x10-4). 

 
Figure 2. Illustration of the image degradation process, the object (galaxy) is convolved by the system PSF of the instrument (Optics, 
Attitude and Orbit Control System jitter, CCD), additive noise comes from various contributors (source, background, detection chain) 

and the CCD functioning mode introduces further signal shape modifications by trapping electrons during the read out.  
 
Even with the extreme accuracy of shape measurement, the observer never has access to the initial shape of the object 
and therefore the shear information of a single object is not observable. The cosmic shear mapping on large scales can 
only be accessed on statistical basis, the underlying assumption being that intrinsic galaxy shapes are uncorrelated and 
therefore on average the mean ellipticity of a sample of galaxies in the absence of cosmic shear is zero. 

The current weak lensing surveys (limited to a few 10’s deg²) still have their uncertainties driven by the statistical errors 
(cosmic variance) linked to their limited sky coverage. In order to reach the accuracy claimed by Euclid mission, the 
survey must extend to the point where the number of galaxies allows overcoming the statistical uncertainties (typically 
over 2 billion galaxies). It has been assessed within the Euclid consortium that the most efficient approach to improve 
statistical accuracy is to enlarge the size of the survey rather than its depth (see figure 3).  
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information in order to perform weak lensing tomography helps disentangling the line of sight projection effect and 
increase the understanding of structure.   

Spectroscopically measuring the redshifts of the galaxies over the entire area of Euclid lensing survey is not feasible.  
Therefore, an alternative approach has been developed and tested in recent years: photometric redshifts. Individual 
galaxies are observed in different broad band filters and binned into a number of redshift bins (typically 10 bins). 

Photo-z simulation in order to optimize the observation and binning strategy are performed in two groups within the 
Euclid consortium (see Abdalla5 et al, and Bordoloi et al6) leading to the selection of a three Near Infrared wavebands 
strategy in the Y [920-1146 nm], J [1146-1371 nm] and extended H [1371-2000 nm] bands. The final photo-z accuracy 
will be achieved using these 3 NIR bands in addition of the visible band and complemented by ground based photometry 
(combination of DES and Pan-STARRS2 at minimum). 

The redshift information is required at two conceptually distinct steps. First, each galaxy must be assigned to individual 
redshift bins. The shear signal is then extracted from the cross-correlation of the shape measurements of individual 
galaxies in different redshift bins, to exclude potential problems such as intrinsic alignments between physically 
associated galaxies that could be mistaken with coherent alignment produced by weak lensing. The required accuracy on 
individual photo-z for bin construction is set by the need to minimize overlap between the bins and hence remove 
physically close correlated galaxy pairs (Bridle and King4). The dispersion σz on NIR individual Photo-z is required to 
be less than 0.05(1+z) Once the weak lensing signal is extracted, a systematic precision in the mean z in each bin is set 
by the required accuracy of the cosmological parameters (Bordoloi et al, 20096) and shall be  σ<z><0.002(1+z).  

In order to reach the photometric accuracy associated to photo-z requirements, the NIR plate scale needs to be 0.300 
arcsec.  

As the number of galaxies available in both visible and NIR is the key parameter to the statistical accuracy of the survey, 
image simulations of the sky as-seen by Euclid have been performed by 2 teams within the Euclid Consortium (see 
Meneghetti et al7 and Massey et al8, figure 5) in order to assess the depth of the survey needed to reach the required 
galaxy density and total number of objects available (~2 billion galaxies required). Image simulations show that with 
magnitude AB = 24.5 (10-σ) in the VIS and magnitude AB = 24.0 in the NIR (5-σ) a density between 30 and 40 galaxies 
per arcmin² are reached with Euclid observation sequence assumption, leading to ~2.5 109 galaxies available. 

 
Figure 5. Euclid Visible R+I+Z band (top) and NIR J band (bottom) image simulations (courtesy M. Meneghetti). 

 
Euclid Weak Lensing Tomography survey as described in this section and with the key parameters summarized in table 
1, is designed to perform unprecedented accuracy cosmology measurements by minimizing the statistical source of 
errors. 
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N# Key Parameter Definition 
1 Shear effect ~1% of object ellipticity measured with error +/-0.01% 
2 Shape measurement shall be performed in a single visible waveband R+I+Z, 550-920 nm 
3 The sampling of galaxy for shape measurement shall be 0.100 arcsec 
4 System PSF ellitpicity (in terms of weighted quadrupoles) shall be < 10% and stability over 50 arcmin² 

shall be better than 2.0 10-4. 
5 N# galaxies > 2.109 
6 Survey size 20 000 deg² 
7 weak lensing survey depth z~0.8 to 1 
8 Photo-z measure in Y [920-1146 nm], J [1146-1371 nm] and extended H [1371-2000 nm] bands 

9 NIR individual Photo-z dispersion σz<0.05(1+z) 
10 NIR Photo-z systematic precision in the mean z in each bin shall be  σ<z><0.002(1+z) 
11 Depth in R+I+Z: mAB=24.5 at 10-sigma (on extended source 0.3 arcsec diametre) 
12 Depth in NIR YJH: mAB=24.0 at 5-sigma (on point source) 
13 The plate scale in the NIR channel shall be 0.300 arcsec 

 Table 1. Euclid Survey key parameters summary 
 
The key issue is now to control the level of systematic errors to confine them to a level where their contribution to the 
error on the dark energy equation of state parameters is minor compared to statistical errors. 

Main systematic error source can be identified as follow: 

• Interpretation of the shear signal (dark matter non-linear correction function, intrinsic alignment correction) 
• Instrumental effects leading to ellipticity correlation (optical PSF anisotropy linked to distortion or diffraction 

pattern, detector effects, satellite line of sight jitter) 
• Photometric redshift calibration errors.   

Part of those systematic effects is linked to the improvement of science understanding and data processing. Some of 
them related to instrument calibration are directly impacting the mission and instrument design and definition described 
in section 3. 

3. EUCLID IMAGING CHANNELS ARCHITECTURE 
3.1 Mission definition 

Observing a homogeneous survey of the entire extragalactic sky with minimum and controlled source of systematic 
effects, together with the request for shape measurement of high and stable image quality, and for photo-z observation in 
the IR that are filtered by the earth atmosphere, drive the Euclid survey to be a space mission. 

Space observations provide diffraction limited imaging capabilities (no atmosphere turbulence perturbation) and optimal 
detection capabilities (no atmospheric attenuation) but of course at a price on instrument size and mass limitation, and 
increased cost and complexity of the overall program. 

Following orbit evaluations performed during the Euclid Assessment Phase by ESA, the selected baseline is a large 
amplitude free-insertion libration orbit around the Sun-Earth second Lagrange point (SEL2 or L2).  

The main advantage of this orbit is that Euclid wide survey can be performed in a very stable thermal environment which 
is preferred to limit the instrument PSF variations with time, and within a radiation environment less severe than Earth, 
which is the limiting factor for detector life time and degradations. Being at L2, such as for JWST or Herschel missions, 
introduces a constraint on the maximum telemetry rate achievable in K-band which sets the maximum to 850 Gbits of 
data that can be down-linked on a daily basis. The second limitation is coming from the Soyouz launcher selected, that 
sets the maximum mass and volume budget allocated to the mission. The assessment phase as been used to consolidate a 
preliminary mass, volume and power break down between sub-systems. 
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Figure 7. Number of frames (and hence integration time) seen by individual pixels of a visible and NIR detector. The 

pixel seing more than 3 frames cumulate sufficient integration time to reach required SNR on reference object. 
 

Evaluation of the radiometric performance of the instrument allows building the reference observation strategy sequence 
based on a 4 frames sequence per instrument field of view, and construction of 20x20 deg² patched out of individual field 
of views. The visible and NIR imaging channels observe in parallel the same fields. The reference observation schemes, 
is based on visible frames of 450 s, in parallel, the 3 NIR wavebands are observed. Between each frame a dither is 
achieved at satellite level. At the end of the 4 frames, the satellite slews to the next field constructing the patch with 
strips of 1x20 deg². 

This strategy allows for 36 fields per day, leading to a maximum of 500 Gbits generated in the visible and 200 Gbits in 
the NIR that fit within the allocated 850 Gbits maximum total amount of data per day. 

3.2 Telescope Optical Architecture 

The drivers for the telescope design are derived from the primary science requirement and from the boundary limits of 
the study, aiming at ensuring feasibility of the mission within programmatic constraints. The primary key parameters for 
the optical design are primary mirror size, instrument field of view, and instrument focal length in the different 
wavebands. 

• Primary mirror diameter: the trade off is to have a primary large enough to ensure the observation of objects, 
and small enough to keep payload within size and mass allocation of the launcher capability (primary mirror is 
one of the parameters directly impacting the satellite size), and within manufacturing feasibility limits. The 
selected mirror diameter is 1.2m. 

• Field of View: the trade off is to have the largest Field of View, as the mission is a survey mission. The larger 
the instrument field of view, the less satellite step-and-stare pointing are required to cover the sky area, each 
step introducing survey inefficiencies for satellite motion and stabilization limiting the effective observation 
time of the instruments. The field of view must be kept small as telescope as optical aberration increase rapidly 
with field size. 

• Focal length:  The focal length is derived from the pixel plate scale requirement and pixel physical scales actual 
feasibility. The reference pixels scales for the selected detectors are 12 µm for the visible and 18 µm in the IR 
leading to a 24 m focal length in the visible and 12 m focal length in the IR. The optical design shall optimize 
the telephoto parameter, defined as the ratio of the system effective focal length (EFL) to the length of the 
optical package to adapt the volume of the telescope to the satellite allocated envelop. 

The reference telescope for the Assessment phase study is a design proposed by ESA. The optical concept is based on a 
Korsch-like F/20 three-mirror telescope. All three mirrors (M1, M2 and M3) are pure conic (no high order aspherical 
terms) and they are common to the VIS and NIP channels. In addition, the NIP channel has a set of 4 lenses (L1, L2, L3 
and L4) that converts the F/20 beam into an F/10. VIS and NIP look at the same portion of sky simultaneously. The field 
of view is centered on an off-axis point. In consequence, the third mirror is used off-axis. This allows us to place the 
dichroic at the pupil image and separate VIS and NIP channels. The dichroic reflects the VIS beam and transmits the NIP 
beam. 
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