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ABSTRACT   

Euclid is an ESA mission to map the geometry of the dark Universe with a planned launch date in 2020. Euclid is 
optimised for two primary cosmological probes, weak gravitational lensing and galaxy clustering. They are implemented 
through two science instruments on-board Euclid, a visible imager (VIS) and a near-infrared spectro-photometer (NISP), 
which are being developed and built by the Euclid Consortium instrument development teams. The NISP instrument 
contains a large focal plane assembly of 16 Teledyne HgCdTe H2RG detectors with 2.3µm cut-off wavelength and 
SIDECAR readout electronics. The performance of the detector systems is critical to the science return of the mission 
and extended on-ground tests are being performed for characterisation and calibration purposes. Special attention is 
given also to effects even on the scale of individual pixels, which are difficult to model and calibrate, and to identify any 
possible impact on science performance. This paper discusses a variety of undesired pixel behaviour including the 
known effect of random telegraph signal (RTS) noise based on initial on-ground test results from demonstrator model 
detector systems. Some stability aspects of the RTS pixel populations are addressed as well.   

Keywords: RTS noise, RTN, Euclid, NISP, H2RG 
 

1. INTRODUCTION  
The combined focal plane for the Near-Infrared Spectrometer and Photometer (NISP) of the ESA medium class mission 
Euclid (see [1] and [2] for further details on the Euclid mission and NISP) consists of 16 individual detector systems 
called Sensor Chip Systems (SCS) arranged in an array of 4 by 4 SCS in the focal plane assembly (FPA). The SCS 
comprises a HgCdTe H2RG detector with 2.3µm cut-off wavelength called the Sensor Chip Assembly (SCA), a 
cryogenic flex cable (CFC) and the SIDECAR readout electronics called Sensor Chip Electronics (SCE). This triplet of 
SCA, CFC and SCE are custom made by Teledyne Imaging Sensors (TIS) for the Euclid mission and provided by NASA 
through JPL with characterisation and acceptance testing under responsibility of the Detector Characterization 
Laboratory (DCL) at Goddard Space Flight Center (GSFC).  

ESA started in August 2012 a pre-development phase with TIS for the Euclid SCS. Some parts from this NRE phase 
were granted to the Euclid Consortium and implemented at the Laboratoire d’Astrophysique de Marseille (LAM) as part 
of the Demonstrator Model (DM) of the Euclid Focal Plane Array (FPA). The setup of the DM FPA is shown in Figure 1 
and further details about the test can be found in [3]. 

The overall science performance of the SCS is excellent considering the statistical percentile of the over 4 million pixels. 
Each pixel can be considered an individual detector within the SCA with its own properties in terms of characteristics 
such as pedestal, gain, noise, linearity and saturation. Tuning of the performance can only be done globally for the SCA 
and not on individual pixels. Some of them exhibit anomalous behaviour, which is the subject of this paper. We address 
the phenomena of Random Telegraph Signal (RTS) noise, out-of-range baseline, anomalous baseline drift and high dark 
current. Identification of the latter three is also needed in order to correctly filter the RTS pixel population. 

*ralf.kohley@esa.int 
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The applied SCE gain were 18 dB leading to a conversion gain for both SCS (SCA1 and SCA2) of about 1.5 e-/ADU. 

3.2 Raw data format and processing 

Each frame of 2048 x 2048 pixels during the UTR 5000 is read out simultaneously over 32 channels, each corresponding 
to 64 columns. The image area photosensitive sites are the inner 2040 x 2040 pixels surrounded by a 4 pixel wide frame 
of reference pixels (4 column/rows left/right/up/down), which are used for reducing systematic noise components. An 
additional reference channel was also available, but the data from this channel has not used in the reference pixel 
subtraction scheme. 

For the anomalous pixel behaviour different operations need to be performed on the individual frames of the UTR. Most 
are based on Correlated Double Sampling (CDS) in order to remove the electronic offset and its associated reset noise 
(kTC noise). The electronic offset, also called baseline or pedestal, is the inherent difference pixel-to-pixel of the reset 
level with a rather wide distribution spanning a few thousand ADU. The electronic offset cannot be independently tuned 
for each pixel and the common set point must be optimised to ensure good linearity and maximum dynamic range for the 
full array. 

To support the following sections we define (N = 5000, i = 1..5000, j = 1..4999 for the UTR 5000): 

Single frames:    Frame_i  (Frame_1,  …, Frame_N)  

uCDS (UTR CDS): uCDS_j = Frame_j – Frame_1 

rCDS (rate CDS):   rCDS_j = Frame_(j+1) – Frame_j 

Fowler-1:  fCDS = Frame_N – Frame_1 

The single frames are used to identify out-of-range baseline (see section 4.2) and ADC saturated pixels. The uCDS or 
“up-the-ramp CDS” frames contain the signal as it integrates up during the UTR exposure. It usually contains the dark 
current ramp, signal jumps due to glitches (cosmic ray), etc. It is used to extract the timeline of signal values for the RTS 
noise analysis. The rCDS or “rate CDS” contains the signal increment from one frame to the next, e.g. normally the dark 
current rate for the frame time of 1.41s. Any jump in signal appears as a spike and it is used to count the number of 
transitions for the RTS noise analysis, the identification of pixels with high dark current rate and to evaluate the readout 
noise (CDS noise). The fCDS or Fowler-1 contains the integrated signal over the full ramp of 5000 frames, e.g. over the 
nearly 2 hours of exposure time for the UTR 5000. 

All CDS frames are reference pixel corrected channel-to-channel through the up/down reference pixels and row-to-row 
through a sliding window of 9 rows on the left/right reference pixels. 

 

4. ANOMALOUS PIXEL BEHAVIOUR 
4.1 General considerations 

The classification of certain pixel performances being anomalous is relative and measured against the statistical 
population and set minimum requirements on performance for the particular application. The affected performance 
parameters are the full scope of measurable parameters such as quantum efficiency, linearity, full well, gain, noise, 
electronic offset, dark current, persistence, etc. For example, a pixel with high dark current in excess of the minimum 
specifications might be flagged as “bad pixel” to be ignored in the data processing. Criteria were developed during the 
DM tests to generate these bad pixel maps for effects in darkness, namely dark current, noise and electronic baseline. 
Some of these are considered in the following sections. The concept of bad pixel or in general performance maps is also 
important in the context of defining operable pixels, e.g. pixels that fulfil the minimum performance requirements for a 
combination of parameters essential to achieve the required science return. In this paper we do not present the generated 
bad pixel maps and only address certain effects. Also the criteria and thresholds for bad pixels are adjusted to the case 
and needs of the RTS analysis and do not directly correspond to those needed for the Euclid mission. The RTS 
phenomenon may be treated as high noise, but due to the systematics could also lead to additional uncertainties in the 
signal ramp fitting. While we explain the phenomenon and quantify the parameter space, the assessment of the impact on 
science for Euclid is outside the scope of this paper. 
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4.2 Out-of-range baseline 

As explained in section 3.2, the baseline set point is a trade-off considering the full distribution of the electronic offset 
for all pixels excluding outliers, which may have abnormally low or high baseline values. Some of these outliers may 
present baseline values at underflow or overflow (0 and 65535 ADU). This condition does not necessarily mean these 
pixels are “dead”, only the baseline is outside the allowed range of the ADC. This has been seen on pixels with baseline 
0 ADU that were illuminated and at one point during the up-the-ramp sampling entered the allowed ADC range and 
behaved like normal pixels. 

Since the signal on these out-of-range baseline pixels cannot be recovered, these need to be flagged as bad pixels for the 
further analysis. Usually the population of out-of-range baseline pixels is quite limited and can be easily identified on the 
first frame after reset. 

The consistent identification of these pixels on repeated baseline images is also needed to distinguish true pixels with 
overflow baseline from transient glitches (cosmic ray impact) that have occurred and saturated the pixel between reset 
and first frame acquisition. Another explication for recording 65535 ADU in a pixel on the first frame after reset would 
be very high dark current (leakage current) that again saturates the pixel between reset and first frame acquisition. ADC 
saturated glitches and dark current effects could be distinguished from baseline effects, if the full well capacity of the 
infrared diode under the applied reverse bias were below the ADC saturation limit. 

Only 1 pixel on SCA1 was at 0 ADU baseline and none on SCA2. 844 pixels of SCA1 and 221 pixels of SCA2 show a 
baseline at 65535 ADU, therefore in total very few pixels are affected. 

4.3 Baseline drift 

Another phenomenon worth investigating is the baseline drift associated to instable bias supplies. While pixels with 
normal baseline behaviour show linear slopes additionally to the dark current contribution, some show instabilities or 
strong negative slopes. The drifts may show changing velocity and stabilize after a certain amount of time. Some 
examples are shown in Figure 3. To identify baseline drift pixels rate CDS images are analysed together with strong 
negative fCDS signal values. Positive linear baseline drifts can only be distinguished from dark current through 
temperature dependency, although we did not evaluate this in detail here, since the focus for this paper is on the RTS 
noise. 

 
Figure 3: Two examples of baseline drifts on SCA1. (Left) the baseline is unstable with a large negative drift over the 
first 200 frames and then a changing drift pattern over the remaining frames. (Right) a strong negative linear baseline drift, 
which would correspond to a negative dark current of about -0.3 ADU/frame. 

4.4 High dark current 

Dark current is charge generated within the detector under absence of photocurrent. Dark current is a well-studied 
parameter in all types of detectors, because of its potentially large impact on science performance. In the Euclid SCAs 
the typical median dark current at the nominal operating temperature of 100K is expected to be very low. The measured 
median dark current on SCA1 during the DM tests was 0.018 e-/s and less than 0.032 e-/s for the 95%-tile (see Figure 4) 
and on SCA2 0.0077 e-/s with 0.021 e-/s for the 95%-tile. The dark current distribution over all pixels nevertheless 
shows a long tail towards high dark current values and pixels exceeding a threshold value of 0.2 e-/s were flagged as bad 
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pixels for this study. While linear dark current ramps will be subtracted off during the RTS noise analysis, the additional 
shot noise make these pixels less suitable for isolating the RTS and are therefore filtered out (about 5% of detected RTS 
candidates). Some ramps also show RTS in dark current (see Figure 5), but which was not further investigated 
statistically. 

  
Figure 4: Distribution of dark current on SCA1 at 100K. Median dark current was 0.016 ADU/frame (0.0177 e-/s). 

 
Figure 5: Two examples of dark current RTS. In both cases clearly the toggling between two distinct dark current 
generation rates are visible for these pixels on SCA1. The mean dark current generation as linear least-square fit is plotted as 
well for comparison.  

4.5 Random Telegraph Signal 

Random Telegraph Signal (RTS) is generally speaking the repeated change (or toggle) between two or more discrete 
states as systematic effect embedded in the signal. RTS can be associated to discrete changes of dark current rate in the 
semiconductor material (see Figure 5) or as RTS noise through discrete current changes in the on-chip amplifier 
structures. RTS noise has been studied in CMOS imaging sensors ([4], [5], [6]) and interpreted as trapping/de-trapping of 
interface states at the Si-SiO2 interface of the source follower transistors. This mechanism also applies to the H2RG 
ROIC.  

RTS noise (also called RTN) in the H2RG appears in form of spontaneous and discrete changes of baseline for 
individual pixels on frames acquired after a reset. The detection of the RTS noise is done on the long up-the-ramp 
sequences in the DM tests of 5000 frames. Initially the detection criterion was excess CDS noise and a high positive or 
negative maximum rate. Signal timelines (ramps) were created by subtracting each frame from the first frame after reset 
in order to remove the pedestal (UTR CDS, see section 3.2). Manual inspection of these single pixel signal timelines 
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simulated parameter value within the given error interval of 20%. The high success rate for period recovery is biased by 
the higher density of shorter periods in the simulations, which are recovered with a higher success rate than the longer 
periods.  

Based on the simulation results and the availability of several UTR 5000 data sets from the DM tests, the number of 
processed frames was set to 5000. While the simulation results are promising, care needs to be taken to not rely on 
detection and parameter success rates for single UTR 5000 ramps of the true test data, since residuals for example from 
reference pixel corrections and low frequency noise were not accounted for in the simulations. Also the true parameter 
value distributions were only based on limited manual inspections of RTS pixels, and would need to be revised. 

Moreover the recovery for large period RTS is not as good as hoped for, partly because of robustness concerning the 
dark current ramp subtraction, which may spoil the value population histograms and give erroneous results. This is an 
area where the algorithm would need improvement together with lowering the detection threshold to lower amplitude 
RTS.  

5.3 Results 

The algorithm was run on the available UTR 5000 ramps for both SCS and at different operating temperatures. Several 
ramps at the same temperature and for the same SCS are used to crosscheck the obtained results for consistency. 
Furthermore individual pixels were inspected to verify the correct execution of the algorithm. Table 2 give the summary 
of the used data sets. During some ramps not all SCS were switched on. The data sets corresponding to either SCA1 
and/or SCA2 are indicated in the table. In total 9 UTR 5000 ramps were processed, 5 for SCA1 and 4 for SCA2. 

Table 2:  Processed UTR 5000 ramps from the DM tests 

Data set Date / time SCA1 SCA2 Operating 
temperature 

1 20150419_06h59_36 Yes - 90 K 

2 20150419_08h57_54 Yes - 90 K 

3 20150419_11h00_50 - Yes 90 K 

4 20150419_13h00_21 Yes Yes 90 K 

5 20150420_22h02_17 Yes Yes 100 K 

6 20150421_00h09_54 Yes Yes 100 K 
 

The algorithm works unbiased and determines for each pixel the parameters based on the histogram and rate CDS 
analysis. The results are stored in image files of the same dimension as the UTR frames. Additionally and based on the 
criteria described in section 5.1, the suspected RTS pixels are flagged and stored as a bit map, which can be used to filter 
the RTS candidates for further analysis. 

5.3.1 Count rates and 2D distribution 

Even filtering out other anomalous pixels (see sections 4.2, 4.3 and 4.4) by applying the corresponding selection maps, 
the RTS detection efficiency is not 100% (see Table 1) and rapidly drops for low amplitude RTS, which on some ramps 
might be detected as RTS and on others not. Furthermore glitches (cosmic ray impacts) occur at random locations during 
the UTR integration and can be mistaken as RTS. Therefore we take a minimum of 2 UTR to exclude random events and 
to consolidate a list of true RTS pixels. In the selection of the UTRs for this analysis we have ensured that this is the case 
for each SCS and operating temperature (see Table 2). The combined maps are a logical AND of the individual bitmaps. 
The number counts are presented in Table 3. 

The amount of rejected RTS candidates when combining the information from two ramps initially looked very high, but 
further inspection showed that most of them indeed were glitches causing a positive jump over the ramp of 5000 frames. 
If most of the rejections were attributed to glitches, the rate would be around 2 affected pixels per second. 

In all cases the consolidated number of RTS pixels is below 1% of all image area pixels. RTS pixels are also found 
among the reference pixels with approximately the same fraction. This confirms the origin of the RTS to be within the 
ROIC. The detected number of RTS depends heavily on the detection threshold of the used algorithm and not detected 
low amplitude RTS might increase this number substantially (see Figure 9). One could even suspect that the population 
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of RTS seamlessly blends into the true noise towards small amplitudes and that in a way all pixels are RTS, but this is 
mere speculation. On the other hand, RTS with smaller amplitude will also certainly have a smaller or even negligible 
impact on science apart from the noise contribution. The histogram in Figure 9 shows that amplitude is very contained 
with 95% of detected pixels with amplitudes below about 300e- (200 ADU) for both SCA and temperatures. 

      
Figure 9: Histogram of amplitude value distribution for SCA1 and 90K. The drop in number counts below about 30 
ADU is heavily conditioned by the detection threshold of the algorithm, which is in this order (see section 5.2). 
Completeness falls off and if the detection threshold could be reduced, the count rate for smaller amplitudes might still raise 
as assumed from higher amplitude counts.  

Table 3:  Number of identified RTS candidates and consolidated lists 

SCA Operating 
temperature Data sets RTS candidates  

(image area pixels) 
RTS candidates 

(reference pixels) 

SCA1 90K 1 45235 340 

  2 45358 352 

  4 46320 342 

  Combined (1, 2) 31134 261 
  Combined (1, 4) 30972 257 
  Combined (2, 4) 31286 262 
  Combined (1, 2, 4) 28163 227 

SCA1 100K 5 43089 252 

  6 45118 258 

  Combined (5, 6) 28533 204 

     

SCA2 90K 3 52581 412 

  4 53922 414 

  Combined (3, 4) 39508 345 

SCA2 100K 5 46519 323 

  6 50317 313 

  Combined (5, 6) 32376 259 
 

Combining found RTS pixels on the same SCA for different temperatures show a drastic drop in count numbers, which 
might be due to changed parameters and population under temperature changes (see section 5.3.4). 
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Figure 13: Intensity plots of (left) correlation between detected amplitude for the same SCA and the same pixels, but 
under the two different temperatures (90K and 100K), and (right) the same for the correlation concerning period. The y-axis 
shows the difference of the 100K to 90K case in detected amplitude and period. The plots show that amplitude is slightly 
reduced for 100K with respect to 90K and period statistically is much reduced for 100K. The ideal correlation line is plotted 
as well as dashed line. 

 
Figure 14: UTR CDS timelines for the same RTS pixel on SCA1 at the operating temperature of 90K (left) and 100K 
(right). The increase in dark current slope (linear least-square fit added as blue line) due to the increased temperature is 
clearly visible as well the increased frequency (shorter period) for the 100K case. 

 
Figure 15: UTR CDS timelines for the same pixel on SCA1 at the operating temperature of 90K (left) and 100K (right). 
While at 90K no RTS signature can be detected, it is clearly visible at 100K. 

 

Proc. of SPIE Vol. 9915  99150H-14
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 May 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

6. CONCLUSIONS 
Different types of anomalous pixel behaviour in darkness have been presented with special focus on the RTS noise 
phenomenon in form of spontaneous baseline changes during the up-the-ramp integration seen as toggling between two 
discrete states. An algorithm has been implemented to detect RTS noise candidates unbiased in the available data sets 
from the demonstrator model tests of the Euclid FPA on two pre-development Teledyne HgCdTe H2RG 2.3µm cut-off 
detector systems custom-made for the Euclid mission.  

Validation of the algorithm has shown that the detection threshold is at about 45e- (about 3-sigma CDS noise), which 
limits the completeness of low amplitude RTS. The existence of these low amplitude RTS has been identified by eye on 
individual pixels, but only for low frequency cases. It is speculated that there might be a seamless transition between low 
amplitude RTS noise and normal noise, which would make the RTS phenomenon common and not reduced to isolated 
cases. Improvements to the detection algorithm performance to smaller amplitudes are needed to prove this statistically, 
which is planned for a future study. With the current detection threshold the number counts of RTS pixels are less than 
1% of all pixels with same proportions for the photosensitive image area pixels as well as for the reference pixels, which 
confirms the origin in the H2RG ROIC. 

In general the RTS behaviour in the detected RTS pixels is spike-like rather than square-wave-like with tendency to 
higher frequencies, e.g. smaller period, and small amplitudes. While isolated cases with higher amplitudes were detected, 
95% of all detections showed amplitudes smaller than about 300e-.  

The temperature dependency of the RTS behaviour has been investigated as well showing in general slightly smaller 
amplitudes and much shorter periods (higher frequency) when going from 90K to 100K operating temperature. The 
higher frequency at higher temperature would be expected considering the trapping/de-trapping origin of the RTS 
phenomenon due to reduced trap release times. Further studies of RTS behaviour change under temperature changes are 
needed though to fully understand the dependency. Open questions that still could not be addressed through the FPA DM 
test data are any changes to the RTS population and properties under thermal cycles, and especially under the influence 
of radiation damage, which will be carried out once the dedicated test data is available.  
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