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ABSTRACT  

The Euclid mission objective is to understand why the expansion of the Universe is accelerating through by mapping the geometry of the dark Universe 
by investigating the distance-redshift relationship and tracing the evolution of cosmic structures. The Euclid project is part of ESA's Cosmic Vision 
program with its launch planned for 2020 (ref [1]). 
The NISP (Near Infrared Spectrometer and Photometer) is one of the two Euclid instruments and is operating in the near-IR spectral region (900-
2000nm) as a photometer and spectrometer. The instrument is composed of:  
- a cold (135K) optomechanical subsystem consisting of a Silicon carbide structure, an optical assembly (corrector and camera lens), a filter wheel 
mechanism, a grism wheel mechanism, a calibration unit and a thermal control system 
- a detection subsystem based on a mosaic of 16 HAWAII2RG cooled to 95K with their front-end readout electronic cooled to 140K, integrated on a 
mechanical focal plane structure made with molybdenum and aluminum. The detection subsystem is mounted on the optomechanical subsystem 
structure 
- a warm electronic subsystem (280K) composed of a data processing / detector control unit and of an instrument control unit that interfaces with the 
spacecraft via a 1553 bus for command and control and via Spacewire links for science data 
This presentation describes the architecture of the instrument at the end of the phase C (Detailed Design Review), the expected performance, the 
technological key challenges and preliminary test results obtained for different NISP subsystem breadboards and for the NISP Structural and Thermal 
model (STM). 
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1. INTRODUCTION  
Euclid is a wide-field space mission concept dedicated to the high-precision study of dark energy and dark matter. Euclid will carry out an imaging and 
spectroscopic wide survey of the entire extra-galactic sky (15000 deg2) along with a deep survey covering at least 40 deg2. To achieve these science 
objectives, the current Euclid reference design consists of a wide field telescope to be placed in L2 orbit by a Soyuz launch with a 6 years’ mission 
lifetime. The payload consists of a 1.2m diameter 3-mirror telescope with two channels: a VISible imaging channel (VIS) and a Near Infrared 
Spectrometer and Photometer channel (NISP). Both instruments observe simultaneously the same Field of View (FoV) on the sky and the system 
design is optimized for a sky survey in a step-and-stare tiling mode. 
The NISP Instrument is operating in the 920-2000 nm range at a temperature lower than 140K, except for detectors, which are cooled down to ~95 K or 
below. The warm electronics will be located in the service module, at room temperature (around 20°C). 
The NISP instrument has two main observing modes: the photometric mode, for the acquisition of images with broad band filters, and the spectroscopic 
mode, for the acquisition of slitless dispersed images on the detectors. 
In the photometer mode the NISP instrument images the telescope light in the wavelength range from 920nm to 2000nm (Y, J, H bands). The spatial 
sampling is required to be 0.3 arcsec per pixel. The FoV of the instrument is 0.55deg2 having a rectangular shape of 0.763deg × 0.722deg.  
In the spectrometer mode the light of the observed target is dispersed by means of grisms covering the wavelength range of 950 – 1850 nm. In order to 
provide a flat resolution over the specified wavelength range, four grisms are mounted in a wheel. These four grisms yield three dispersion directions 
tilted against each other by 90° in order to reduce confusion from overlapping (due to slitless observing mode). The field and waveband definitions 
used in the individual configurations for spectroscopy and photometry are: 

• Three photometric bands: 
1. Y Band: 950 − 1192nm  
2. J Band: 1192 − 1544nm 
3. H Band: 1544 – 2000nm 

• Four Slitless spectroscopic bands: 
1. Red 0°; 90° and 180° dispersion: 1250 − 1850nm  
2. Blue 0° dispersion: 920 − 1300nm  

The spectral resolution shall be higher than 250 for a one arcsec homogenous illumination object size. For such an object, the flux limit in spectroscopy 
shall be lower than 2x10-16 erg·cm-2·s-1 at 1600 nm wavelength. As with all slitless spectrographs, the real resolution varies with the object size (the 
smaller the size is, higher the resolution is). 
The image quality of the instrument in flight shall deliver a 50% radius encircled energy better than 0.3 arcsec and a 80% one better than 0.7 arcsec. 
There is a variation due to diffraction with wavelength. 
 
The NISP budgets are presently the following: 
The instrument sits in a box of 1.0 × 0.6 × 0.5m  
The total mass of the instrument is 155kg 
The maximum power consumption is 178W 
The instrument will produce 290GBit of data per day 
 
European Contributor countries for NISP are: France, Italy, Germany, Spain, Denmark and Norway, ESA for the engineering detectors and USA 
(NASA) for the flight detectors. 
 

2. NISP GLOBAL DESCRIPTION 
The NISP instrument consists of three main Assemblies 

• The NI-OMA (Opto-Mechanical Assembly), composed of the Mechanical Support Structure (NI-SA) and its thermal control (NI-TC), the 
Optical elements (NI-OA), the Filter Wheel Assembly (NI-FWA), the Grism Wheel Assembly (NI-GWA), the Calibration Unit (NI-CU). 
The NI-OMA structure supports the Optical elements, the calibration unit, the Filter and Grism Wheel Units and the detection system. It 
provides the thermo-mechanical interface towards the Euclid PLM. 

• The NI-DS (Detector System Assembly) is composed by the Focal Plane Assembly (NI-FPA; the mechanical part of NI-DS) and by the 
Sensor Chip System (NI-SCS) compose). The NI-DS comprises the 16 H2RG detectors and associated 16 ASICS (Sidecars), passively 
cooled at operating temperature (<100K for the detectors; 140K for the ASICS Sidecar). Thermal stabilization of the detector is "naturally" 
obtained thanks to the very good thermal stability provided by the Euclid PLM at the NISP interfaces 

• The Warm Electronics Assembly (NI-WE), composed of the Instrument Data Processing Unit and Control Unit (NI-DPU/DCU), and the 
Instrument Control Unit (NI-ICU). The NI-ICU is managing the commanding and the control of the instrument. It is interfaced with the 
satellite via a 1553 bus. The NI-DPU/DCU controls the Sensor Chip System and basic image processing such as co-adding (DCU function) 
and the science onboard data processing, the compression and transfer of scientific data to the S/C Mass Memory using Spacewire links 
(DPU function). The NI-DPU/DCU functions are regrouped in a single mechanical box for controlling eight detectors. There are two NI-
DPU/DCU boxes. 

 
The NI-DS is screwed on the NI-OMA (SiC panel to SiC panel). The NI-OMA+NI-DS is located in the Euclid spacecraft Payload module in a cold 
environment (130K). The Warm electronic are located in the Euclid spacecraft Service Module at room temperature. A dedicated harness interconnects the 
NI-OMA, the NI-DS, the NI-WE and different spacecraft electronics boxes 
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6. ONBOARD DATA PROCESSING (SEE REF [8]): 
The routine science NISP operations foresee 20 fields of observation per day, each one composed by four dithers where four exposures each are taken, 
for a total maximum assigned science data telemetry of 290 Gbit/day. A dark exposure is taken during the spacecraft slew. This limited amount of 
allowed telemetry, together with the huge number of frames typically produced by IR detectors operated in multi-accumulation mode, have as a 
consequence the need to perform part of the processing pipeline directly on-board and to transfer to ground only the final products for each exposure. 
Moreover, final data must be also compressed to fit with the assigned telemetry throughput. A number of readout modes have been envisioned for the 
NISP instrument in the various development stages. Multi-accumulation (MACC) is at the moment the preferred modes for both spectrograph and 
photometer readout. MACC readout is a peculiar Up the Ramp process (UTR) where detector readouts are grouped in contiguous sets of readouts 
uniformly placed along the accumulated charge ramp. The data processing can be split into two main stages: stage 1 is implemented in the NI-DCU, 
directly interfaced to the SCS, where the first static basic pre-processing steps are performed, while stage 2, performed in NI-DPU, is devoted to the 
processing and compression of the final data frames. 

 

Figure 6-1: Pre-processing HW structure connected to 1× SCS single pair (H2RG SCA + SCE) from a total of 16× located inside the SCS system 

The software architecture is dictated by the science requirements and depends on the hardware organization, in terms of DPU power, internal memory, 
available links with both DCU and SVM. During the previous different phases of the project various processing possibilities were analyzed, in terms of 
computational complexity, DPU internal memory needs, amount of final data and quality of results. As a result, the foreseen on-board pre-processing 
pipeline7 will be as depicted in Figure 6-2 where the violet blocks represent the operations performed inside the DPUs. This operational flow is 
sequentially repeated to cover the 17 exposures (4 spectro + 12 photo + 1 dark) to be performed during each single cycle.  
At the end of the pipeline described in Figure 6-2 final generated data, with their associated header and metadata to properly re-construct images on 
ground, are transmitted to the spacecraft Mass Memory Unit, to be down-linked to ground. 
The most crucial constraint for the on-board processing is given by the need to keep up with the on-going observations, so the previous work was 
mostly concentrated to verify the algorithm performances, especially in terms of time spent. Current development steps include the integration of the 
data processing with the overall DPU Application Software structure. 
 

 
Figure 6-2: On-board data processing pipe-line for the Euclid NIS/NIP instrumental modes. The pipe-line is subdivided in three different sections on 

the base of the involved hardware, in the order: SCE analog hardware, FPGA hardware and sequential processing hardware 
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