
1ESA UNCLASSIFIED – For ESA Official Use Only

Web App Front-end Testing with Cypress

25/09/2023

ESA ESAC

Software Product Assurance Workshop 2023

European Space Astronomy Centre, Spain Marian Cuevas, Fernando Guerrero

RHEA Group

for

https://www.rheagroup.com/
https://www.aurora.nl/

22

Table of Contents

01 About ESAC Science Data Centre

02 Cypress Overview

03 Why Cypress?

04 Cypress Core Concepts

05 Session Handling

06 Custom Commands

07 Spies and Stubs

08 Visual Testing

09 Intercepting Network Requests

10 Code Coverage

11 Screenshots and Videos

12 Recording Tests with Cypress Studio

13 Acknowledgements

for

https://www.rheagroup.com/
https://www.aurora.nl/

33

Web App Front-end Testing with Cypress

01 About ESAC Science Data Centre

02 Cypress Overview

03 Why Cypress?

04 Cypress Core Concepts

05 Session Handling

06 Custom Commands

07 Spies and Stubs

08 Visual Testing

09 Intercepting Network Requests

10 Code Coverage

11 Screenshots and Videos

12 Recording Tests with Cypress Studio

13 Acknowledgements

for

https://www.rheagroup.com/
https://www.aurora.nl/

4

About ESAC Science Data Centre

• Over 30 archives… and more to come.

• Storage to reach the Petabyte scale.

The challenges:

• Data preservation and curation, log after mission termination.

• Data availability for the science community via several endpoints, among

which are the archives’ web sites.

• Cost optimization.

• Keep technologies up-to-date: deprecation of obsolete platforms and

migration to modern frameworks.

• Strategy focused on long-term maintenance, reliable technologies.

for

ESAC Science Data Centre (https://www.cosmos.esa.int/web/esdc) is located a

ESAC facilities in Villanueva del Castillo and is responsible for the ESA science

missions archives.

https://www.cosmos.esa.int/web/esdc
https://www.rheagroup.com/
https://www.aurora.nl/

55

Web App Front-end Testing with Cypress

01 About ESAC Science Data Centre

02 Cypress Overview

03 Why Cypress?

04 Cypress Core Concepts

05 Session Handling

06 Custom Commands

07 Spies and Stubs

08 Visual Testing

09 Intercepting Network Requests

10 Code Coverage

11 Screenshots and Videos

12 Recording Tests with Cypress Studio

13 Acknowledgements

for

https://www.rheagroup.com/
https://www.aurora.nl/

6

Cypress Overview

(https://www.cypress.io/) is a free open-

source JavaScript-based end-to-end testing designed

to work with modern web development frameworks

such as Angular. A commercial Cypress Cloud solution

for enterprises is also available.

Recommended readings:

https://docs.cypress.io/guides

https://docs.cypress.io/api/table-of-contents

Cypress vs Selenium

• Cypress provides a robust, complete framework for
running automated tests but takes some of the freedom
out of Selenium by confining the user to specific
frameworks and languages

• Selenium supports various programming languages
(Java, Python …), and provides a suite of tools for testing
web applications, including Selenium WebDriver,
Selenium Grid, and Selenium IDE

• Cypress uses a completely different approach to testing
than Selenium. While Selenium WebDriver runs remotely
outside the browser and executes remote commands into
the browser, Cypress runs inside the browser

for

https://www.cypress.io/
https://docs.cypress.io/guides/cloud/introduction
https://docs.cypress.io/guides
https://docs.cypress.io/api/table-of-contents
https://www.rheagroup.com/
https://www.aurora.nl/

7

Cypress Overview

Cypress is intended for functional testing

• End-to-end testing

• Component testing

• Integration testing

• API testing

• Unit testing

Cypress is not a non-functional testing tool

• Performance testing

• Load testing

• Usability testing

• Security testing

for

https://www.rheagroup.com/
https://www.aurora.nl/

88

Web App Front-end Testing with Cypress

01 About ESAC Science Data Centre

02 Cypress Overview

03 Why Cypress?

04 Cypress Core Concepts

05 Session Handling

06 Custom Commands

07 Spies and Stubs

08 Visual Testing

09 Intercepting Network Requests

10 Code Coverage

11 Screenshots and Videos

12 Recording Tests with Cypress Studio

13 Acknowledgements

for

https://www.rheagroup.com/
https://www.aurora.nl/

9

Why Cypress?

Some years ago, ESDC decided to deprecate Google Web Toolkit and use Angular for web developing as part of

a long-term strategy. Consequently, the testing framework should fit the same principles. There are several well-

known testing tools for web applications (e.g., Selenium) but it was finally decided to use Cypress due to the

following reasons:

✓ Modern testing framework for JavaScript solutions, including Agular, and provides built-in support for them.

✓ Expected to be maintained and evolve in the long-term.

✓ Very good documentation and active community.

✓ Productivity:

➢ Easy to set up.

➢ Fast learning curve.

➢ Easy-to-use debugging.

➢ Automatic waiting: no need for complex flow coding to create tests.

✓ Cross browser: currently supporting Chrome-family browsers, including Microsoft Edge, WebKit (Safari's

browser engine), and Firefox.

✓ Possibility to extend the functionality via plugin extensions. Many plugins already available. Possibility to

design a custom plugin.

for

https://www.rheagroup.com/
https://www.aurora.nl/

1010

Web App Front-end Testing with Cypress

01 About ESAC Science Data Centre

02 Cypress Overview

03 Why Cypress?

04 Cypress Core Concepts

05 Session Handling

06 Custom Commands

07 Spies and Stubs

08 Visual Testing

09 Intercepting Network Requests

10 Code Coverage

11 Screenshots and Videos

12 Recording Tests with Cypress Studio

13 Acknowledgements

for

https://www.rheagroup.com/
https://www.aurora.nl/

11

Cypress Core Concepts

Writing tests:

Tests are grouped in spec files, and structured the way described

following:

describe() or context() are synonyms used for grouping tests.

it() or specify() are synonyms that correspond to an individual

test.

Hooks:

❖ before(): runs once before all tests.

❖ after(): runs once after all tests.

❖ beforeEach(): runs once before each test.

❖ afterEach(): runs once after each test.

Hooks are run within their describe block and subsequent nested

blocks.

for

https://www.aurora.nl/
https://www.rheagroup.com/

12

Cypress Core Concepts

Test isolation: by default, browser state, including DOM, cookies and storage is cleared before each tests. Tests

state, such as spies, or viewport changes are also reset.

Automatic retries: Cypress will retry queries on DOM elements, assertions, and actions automatically, saving the

programmer time and effort.

Cypress commands are asynchronous: cy.* commands and chains of commands return immediately, after

having been appended to a queue that will run after the test code has been executed. It is a common mistake to

mix synchronous and asynchronous commands.

Querying elements: there are several ways to identify and select DOM elements. E.g., cy.get(‘.element’).

Chaining commands:

cy.get(‘#selector’).then(($element) =>{$element.contains(‘button’).click()})

Assertions: assertions can be used to evaluate the state of elements, objects or the application itself.

cy.get(‘#selector’).should(‘contain.text’, ‘Welcome to the PA Workshop!’)

Some commands have built-in assertions. E.g., .click() expects the element to be in an actionable state or will

yield an error.

for

https://www.rheagroup.com/
https://www.aurora.nl/

13

Cypress Core Concepts

Time travel: Cypress test runner

has a command log that is a

representation of the test suite.

On the right it shows the

application under test.

Hovering over each command

restores the application to the

state it was when the command

was executed.

for

https://www.rheagroup.com/
https://www.aurora.nl/

14

Cypress Core Concepts

Native browser inspection: Open

developer tools and inspect your

testo or application as you would do

in a normal application.

✓ Get logs and outputs for your

commands in the console.

✓ Access the DOM.

✓ Set breakpoints in your test or

application code and debug.

✓ Review network requests and

responses.

for

https://www.rheagroup.com/
https://www.aurora.nl/

15

Cypress Core Concepts for

Practical example of basic user test: access to a web site that requires a login.

In this example:
✓ Running tests interactively. Browser selection
✓ Cypress front end
✓ Command log: reviewing test suite’s steps
✓ Assertions
✓ Selectors

If you have any question, please use the following link or
QR code to submit it and we will try to answer it:
https://forms.office.com/e/sXW1NfK2Tt

https://www.rheagroup.com/
https://www.aurora.nl/
https://forms.office.com/e/sXW1NfK2Tt

16

Cypress Core Concepts for

https://www.rheagroup.com/
https://www.aurora.nl/

1717

Web App Front-end Testing with Cypress

01 About ESAC Science Data Centre

02 Cypress Overview

03 Why Cypress?

04 Cypress Core Concepts

05 Session Handling

06 Custom Commands

07 Spies and Stubs

08 Visual Testing

09 Intercepting Network Requests

10 Code Coverage

11 Screenshots and Videos

12 Recording Tests with Cypress Studio

13 Acknowledgements

for

https://www.rheagroup.com/
https://www.aurora.nl/

18

Session Handling

Cypress provides a cy.session() command to cache and restore cookies, localStorage and sessionStorage so that

browser context is recreated between tests:

➢ Programmatically executes a log in and cache session data.

➢ Optional validation method to trigger re-creation of a failing restored session.

➢ Possibility to switch between different sessions in the same tests.

➢ Ability to modify session data before caching.

When working with cy.session():

1. If the session is not cached, then a new session is created and cached.

2. If the session is cached and valid, session is restored.

3. If the session is cached and invalid, then session is re-created.

4. If session cannot be created, restored, or re-created, test fails.

for

https://docs.cypress.io/api/commands/session
https://www.rheagroup.com/
https://www.aurora.nl/

19

Session Handling for

Example of session cache.

In this example:
✓ Caching a session
✓ Session validation
✓ Session creation, re-creation and restoring

If you have any question, please use the following link or
QR code to submit it and we will try to answer it:
https://forms.office.com/e/sXW1NfK2Tt

https://www.rheagroup.com/
https://www.aurora.nl/
https://forms.office.com/e/sXW1NfK2Tt

20

Session Handling for

https://www.rheagroup.com/
https://www.aurora.nl/

2121

Web App Front-end Testing with Cypress

01 About ESAC Science Data Centre

02 Cypress Overview

03 Why Cypress?

04 Cypress Core Concepts

05 Session Handling

06 Custom Commands

07 Spies and Stubs

08 Visual Testing

09 Intercepting Network Requests

10 Code Coverage

11 Screenshots and Videos

12 Recording Tests with Cypress Studio

13 Acknowledgements

for

https://www.rheagroup.com/
https://www.aurora.nl/

22

Custom Commands

Cypress provides an API for creating custom commands or overwriting existing ones.

Following the instructions provided in cypress/support/commands.ts a new command can be created calling

Cypress.Commands.add()

Cypress.Commands.overwrite()

Custom commands are very useful to code a series of repetitive actions that will be repeated across a lot of tests.

A login custom command is a good example: it avoids lots of repetitive actions and can be invoked from the API

using cy.login().

Custom commands can be declared following the instructions provided in the documentation.

for

https://www.rheagroup.com/
https://www.aurora.nl/

23

Custom Commands for

Example of custom login and logout commands.

In this example:

✓ Extending the previous example: creating a custom command for session

cache that can be used by any spec.

✓ Adding custom commands and extending the Cypress API:

cy.tapLogin() and cy.tapLogout()

✓ Setting a breakpoint in the test code and interacting with the browser’s

development tools.

If you have any question, please use the following link or

QR code to submit it and we will try to answer it:

https://forms.office.com/e/sXW1NfK2Tt

https://www.rheagroup.com/
https://www.aurora.nl/
https://forms.office.com/e/sXW1NfK2Tt

24

Custom Commands for

https://www.rheagroup.com/
https://www.aurora.nl/

2525

Web App Front-end Testing with Cypress

01 About ESAC Science Data Centre

02 Cypress Overview

03 Why Cypress?

04 Cypress Core Concepts

05 Session Handling

06 Custom Commands

07 Spies and Stubs

08 Visual Testing

09 Intercepting Network Requests

10 Code Coverage

11 Screenshots and Videos

12 Recording Tests with Cypress Studio

13 Acknowledgements

for

https://www.rheagroup.com/
https://www.aurora.nl/

26

Spies and Stubs

Spies are used to track the execution of a

determined code. cy.spy() can wrap a method to

record calls and arguments passed to the

function.

Stubs are used to replace a method, recording

its usage and controlling its behaviour or

returned value.

Asserts can be made on spies and stubs.

When tests are run, spies and stubs are

displayed

in the command log.

for

https://www.rheagroup.com/
https://www.aurora.nl/

27

Spies and Stubs for

Example of spy.

In this example:

✓ Obtaining a reference to an Angular component in the application

✓ Setting a spy on a method

✓ Asserting on a spy

✓ Observing the spy in the command log

If you have any question, please use the following link or

QR code to submit it and we will try to answer it:

https://forms.office.com/e/sXW1NfK2Tt

https://www.rheagroup.com/
https://www.aurora.nl/
https://forms.office.com/e/sXW1NfK2Tt

28

Spies and Stubs for

https://www.rheagroup.com/
https://www.aurora.nl/

2929

Web App Front-end Testing with Cypress

01 About ESAC Science Data Centre

02 Cypress Overview

03 Why Cypress?

04 Cypress Core Concepts

05 Session Handling

06 Custom Commands

07 Spies and Stubs

08 Visual Testing

09 Intercepting Network Requests

10 Code Coverage

11 Screenshots and Videos

12 Recording Tests with Cypress Studio

13 Acknowledgements

for

https://www.rheagroup.com/
https://www.aurora.nl/

30

Visual Testing

Cypress is a functional test runner designed to validate an application functions as expected, but it cannot see

how the application is rendered.

The approach of visual testing is using one of the visual testing plugins to compare an image snapshot of the

application at a certain stage with a previously stored one. If there is little or no difference, assumption can be

made that the application works properly.

Visual testing can be a very useful tool, but it must be considered that:

➢ The need for visual testing must be justified: a great number of assertions validating styles or data.

➢ Visual testing can lead to flaky tests if not designed properly. Image snapshots must be taken when the page is

done changing.

➢ Comparing individual elements is preferred to comparing the whole page.

for

https://docs.cypress.io/plugins#visual-testing
https://www.rheagroup.com/
https://www.aurora.nl/

31

Visual Testing for

Example of visual testing.

In this example:

✓ Changing the screen resolution: Viewport

✓ Dynamically creating tests based on a predefined input

✓ Asserting on the application display: pre-recorded snapshots

If you have any question, please use the following link or

QR code to submit it and we will try to answer it:

https://forms.office.com/e/sXW1NfK2Tt

https://www.rheagroup.com/
https://www.aurora.nl/
https://forms.office.com/e/sXW1NfK2Tt

32

Visual Testing for

https://www.rheagroup.com/
https://www.aurora.nl/

3333

Web App Front-end Testing with Cypress

01 About ESAC Science Data Centre

02 Cypress Overview

03 Why Cypress?

04 Cypress Core Concepts

05 Session Handling

06 Custom Commands

07 Spies and Stubs

08 Visual Testing

09 Intercepting Network Requests

10 Code Coverage

11 Screenshots and Videos

12 Recording Tests with Cypress Studio

13 Acknowledgements

for

https://www.rheagroup.com/
https://www.aurora.nl/

34

Intercepting Network Requests

Cypress provides access to HTTP requests made during the tests via the cy.intercept() command. It is

possible to stub or mock responses, make assertions, and simulating network delays.

The most common way for stubbing responses is using fixtures: fixed sets of data that are returned after a certain

request is made without getting to the server. The best strategy is usually a combination of true end-to end tests

and stubbed ones considering on the pros and cons.

Stubbing

• Good for testing edge cases

• Simulate network conditions

• Faster

• Use for the majority of test cases

• Less test coverage on server

• Stubbed response may differ from the server

one

Full end-to-end

• Likely to work in production

• Test coverage around server endpoints

• Use sparingly: for testing critical paths

• Requires seeding and keeping data unchanged

• Much slower

for

https://www.rheagroup.com/
https://www.aurora.nl/

35

Intercepting Network Requests for

Example of network request interception.

In this example:

✓ Full flaky e2e test combining all features discussed previously

✓ Converting e2e to front-end testing using fixtures

✓ Observing interceptions, and stubbed responses in the command log

✓ Returning HTTP codes for simulating server error

If you have any question, please use the following link or

QR code to submit it and we will try to answer it:

https://forms.office.com/e/sXW1NfK2Tt

https://www.rheagroup.com/
https://www.aurora.nl/
https://forms.office.com/e/sXW1NfK2Tt

36

Intercepting Network Requests for

https://www.rheagroup.com/
https://www.aurora.nl/

3737

Web App Front-end Testing with Cypress

01 About ESAC Science Data Centre

02 Cypress Overview

03 Why Cypress?

04 Cypress Core Concepts

05 Session Handling

06 Custom Commands

07 Spies and Stubs

08 Visual Testing

09 Intercepting Network Requests

10 Code Coverage

11 Screenshots and Videos

12 Recording Tests with Cypress Studio

13 Acknowledgements

for

https://www.rheagroup.com/
https://www.aurora.nl/

38

Code Coverage

Determining code coverage is essential to assess what our tests are really testing using it as a guide for

identifying where test effort is needed. Page https://docs.cypress.io/guides/tooling/code-coverage documents set

up code coverage in Cypress.

Several coverage report formats can be configured to be either human-readable output or information for third

party services, such as CI/CD tools.

for

https://docs.cypress.io/guides/tooling/code-coverage
https://www.rheagroup.com/
https://www.aurora.nl/

39

Code Coverage for

Example code coverage report.

In this example:

✓ E2e code coverage report

✓ Use the html report to assess actual code covered by tests and design

new ones for untested code.

If you have any question, please use the following link or

QR code to submit it and we will try to answer it:

https://forms.office.com/e/sXW1NfK2Tt

https://www.rheagroup.com/
https://www.aurora.nl/
https://forms.office.com/e/sXW1NfK2Tt

40

Code Coverage for

https://www.rheagroup.com/
https://www.aurora.nl/

4141

Web App Front-end Testing with Cypress

01 About ESAC Science Data Centre

02 Cypress Overview

03 Why Cypress?

04 Cypress Core Concepts

05 Session Handling

06 Custom Commands

07 Spies and Stubs

08 Visual Testing

09 Intercepting Network Requests

10 Code Coverage

11 Screenshots and Videos

12 Recording Tests with Cypress Studio

13 Acknowledgements

for

https://www.rheagroup.com/
https://www.aurora.nl/

42

Screenshots and Videos

Cypress comes with the ability of capturing screenshots and videos automatically. This feature is configurable

and particularly useful when running tests from the command line and in headless mode. In addition to the console

output, the captured video or screenshot can help the tester to determine the cause of a failing test.

for

https://www.rheagroup.com/
https://www.aurora.nl/

43

Screenshots and Videos

Example of screenshot and video generation for a test suite.

In this example:

✓ Running a spec in headless mode

✓ Review the screenshot and video generated when a test fails

for

If you have any question, please use the following link or
QR code to submit it and we will try to answer it:
https://forms.office.com/e/sXW1NfK2Tt

https://www.rheagroup.com/
https://www.aurora.nl/
https://forms.office.com/e/sXW1NfK2Tt

44

Screenshots and Videos for

https://www.rheagroup.com/
https://www.aurora.nl/

4545

Web App Front-end Testing with Cypress

01 About ESAC Science Data Centre

02 Cypress Overview

03 Why Cypress?

04 Cypress Core Concepts

05 Session Handling

06 Custom Commands

07 Spies and Stubs

08 Visual Testing

09 Intercepting Network Requests

10 Code Coverage

11 Screenshots and Videos

12 Recording Tests with Cypress Studio

13 Acknowledgements

for

https://www.rheagroup.com/
https://www.aurora.nl/

46

Recording Tests with Cypress Studio

Cypress Studio is a Beta feature that allows generating new code from the Cypress Application user interface.

Cypress Studio can be used to:

➢ Extend existing tests

➢ Create new tests

for

https://www.rheagroup.com/
https://www.aurora.nl/

47

Recording Tests with Cypress Studio for

Example of test recording.

In this example:

✓ Calling Cypress Studio

✓ Creating new test code recording user interaction with the Cypress

Application

If you have any question, please use the following link or

QR code to submit it and we will try to answer it:

https://forms.office.com/e/sXW1NfK2Tt

https://www.rheagroup.com/
https://www.aurora.nl/
https://forms.office.com/e/sXW1NfK2Tt

48

Recording Tests with Cypress Studio for

https://www.rheagroup.com/
https://www.aurora.nl/

4949

Web App Front-end Testing with Cypress

01 About ESAC Science Data Centre

02 Cypress Overview

03 Why Cypress?

04 Cypress Core Concepts

05 Session Handling

06 Custom Commands

07 Spies and Stubs

08 Visual Testing

09 Intercepting Network Requests

10 Code Coverage

11 Screenshots and Videos

12 Recording Tests with Cypress Studio

13 Acknowledgements

for

https://www.rheagroup.com/
https://www.aurora.nl/

50

Acknowledgements

This session has been possible thanks to the cooperation of

The ESDC Team

And particularly the Integral

Science Legacy Archive

for

https://www.rheagroup.com/
https://www.aurora.nl/

5151

Thank you for your attention

for

https://www.rheagroup.com/
https://www.aurora.nl/

	Slide 1
	Slide 2: Table of Contents
	Slide 3: Web App Front-end Testing with Cypress
	Slide 4: About ESAC Science Data Centre
	Slide 5: Web App Front-end Testing with Cypress
	Slide 6: Cypress Overview
	Slide 7: Cypress Overview
	Slide 8: Web App Front-end Testing with Cypress
	Slide 9: Why Cypress?
	Slide 10: Web App Front-end Testing with Cypress
	Slide 11: Cypress Core Concepts
	Slide 12: Cypress Core Concepts
	Slide 13: Cypress Core Concepts
	Slide 14: Cypress Core Concepts
	Slide 15: Cypress Core Concepts
	Slide 16: Cypress Core Concepts
	Slide 17: Web App Front-end Testing with Cypress
	Slide 18: Session Handling
	Slide 19: Session Handling
	Slide 20: Session Handling
	Slide 21: Web App Front-end Testing with Cypress
	Slide 22: Custom Commands
	Slide 23: Custom Commands
	Slide 24: Custom Commands
	Slide 25: Web App Front-end Testing with Cypress
	Slide 26: Spies and Stubs
	Slide 27: Spies and Stubs
	Slide 28: Spies and Stubs
	Slide 29: Web App Front-end Testing with Cypress
	Slide 30: Visual Testing
	Slide 31: Visual Testing
	Slide 32: Visual Testing
	Slide 33: Web App Front-end Testing with Cypress
	Slide 34: Intercepting Network Requests
	Slide 35: Intercepting Network Requests
	Slide 36: Intercepting Network Requests
	Slide 37: Web App Front-end Testing with Cypress
	Slide 38: Code Coverage
	Slide 39: Code Coverage
	Slide 40: Code Coverage
	Slide 41: Web App Front-end Testing with Cypress
	Slide 42: Screenshots and Videos
	Slide 43: Screenshots and Videos
	Slide 44: Screenshots and Videos
	Slide 45: Web App Front-end Testing with Cypress
	Slide 46: Recording Tests with Cypress Studio
	Slide 47: Recording Tests with Cypress Studio
	Slide 48: Recording Tests with Cypress Studio
	Slide 49: Web App Front-end Testing with Cypress
	Slide 50: Acknowledgements
	Slide 51

