
vsma.nasa.gov

National Aeronautics and Space Administration

Software Assurance
Tim Crumbley
September 2023

ESA Software Assurance Workshop

vsma.nasa.gov

NASA Software Assurance Program Goals

 Provide risk-based performance requirements that provide flexibility for the
project Software Assurance and Software Safety activities.

 Improve the risk, issue and finding reporting from the NASA
Software Assurance and Software Safety organizations.

 Add value for Software Assurance and Software Safety activities and
demonstrate the importance of the NASA Software Assurance activities.

 Numerical Software Quality Assessments (Code and Requirements)
 Provide standard tools and services for Software Assurances activities on

projects.
 Provide measurable quantifiable Software Assurance assessments
 Improve the use of data and metrics on all NASA Software Assurance activities.
 Focus Software Assurance activities on known software issues, including

targeting Software Assurance and Software Safety research activities.
 Develop more efficient and automated methods for Software Assurance,

Software Safety and Software Quality activities.
 Improve Software Assurance training and training requirements in the Safety and

Mission Assurance Technical Excellence Program and across the agency.
 Updated documents in software assurance, software safety, and software quality

2

https://www.nasa.gov/sites/default/files/thumbnails/image/iss063e033443.jpg

vsma.nasa.gov

A Thought!

"What gets measured, gets managed." -

Peter Drucker

 There is so much power in this quote.

 If you've never tracked yourself, you don't even know how much power there is in tracking.

 The simple act of paying attention to something will cause you to make connections you never

did before, and you'll improve those areas - almost without any extra
effort.

vsma.nasa.gov

Metrics

vsma.nasa.gov

Metrics

vsma.nasa.gov

Metrics

vsma.nasa.gov

Why Measure?

Management
without
metrics
is just

guessing

Software
Assurance

without metrics
is just

guessing

vsma.nasa.gov

 Requirements volatility: total number of requirements and
requirement changes over time.

 Bidirectional traceability: Percentage complete of System level
requirements to Software Requirements, Software
Requirements to Design, Design to Code, Software
Requirements to Test Procedures

 Software size: planned and actual number of units, lines of
code, or other size measurement over time.

 Software staffing: planned and actual staffing levels over time.

 Software complexity: complexity of each software unit.

 Software progress: planned and actual number of software
units designed, implemented, unit tested, and integrated
overtime, code developed.

 Problem/change report status: total number, number closed,
number opened in the current reporting period, age, severity.

 Software test coverage: a measure used to describe the degree
to which the source code of a project is tested by a
particular test suite

 Build release content: planned and actual number of software
units released in each build.

 Build release volatility: planned and actual number of software
requirements implemented in each build.

 Computer hardware and data resource utilization: planned and
actual use of computer hardware resources over time.

 Milestone performance: planned and actual dates of key
project milestones.

 Scrap/rework: amount of resources expended to replace or
revise software products after they are placed under any level
of configuration control above the individual author/developer
level.

 Effect of reuse: a breakout of each of the indicators above for
reused versus new software products.

 Cost performance: identifies how efficiently the project team
has turned costs into progress to date.

 Budgeted cost of work performed: identifies the cumulative
work that has been delivered to date.

 Audit performance: Are you following a defined processes, how
many audits have been completed, audit findings, audit
findings open/close numbers

 Risk Mitigation: Number of identified software risks, risk
migration status

 Hazard analysis: number of hazard analysis completed, hazards
mitigation steps addressed in software requirements and
design, number of mitigation steps tested

Candidate Management Indicators Used On Software Projects

vsma.nasa.gov

Objectives of the Software Assurance and Software Safety Standard

a. Ensuring that the processes, procedures, and products used to produce and sustain
the software conform to all specified requirements and standards that govern those
processes, procedures, and products.

(1) A set of activities that assess adherence to, and the adequacy of the software
processes used to develop and modify software products.

(2) A set of activities that define and assess the adequacy of software processes to
provide evidence that establishes confidence that the software processes are
appropriate for and produce software products of suitable quality for their
intended purposes.

b. Determining the degree of software quality obtained by the software products.

c. Ensuring that the software systems are safe and that the software safety-critical
requirements are followed.

d. Ensuring that the software systems are secure.

e. Employing rigorous analysis and testing methodologies to identify objective
evidence and conclusions to provide an independent assessment of critical
products and processes throughout the life cycle.

https://swehb.nasa.gov/

vsma.nasa.gov

 Planning
– Implementation of the NASA-STD-8739.8A

requirements
– Software assurance\safety requirements mapping

matrix, review any tailored requirements
– Software assurance\safety approach, plan and

resource allocations
– "Software assurance\safety requirements flow

down into contracts"

 "Analysis"
– Software requirements analysis
– Software safety analysis
– Software test analysis
– Software hazard analysis
– Software source code quality analysis
– Peer reviews

 Static Analysis Tools Assessments

 Audits
– Software engineering requirements flow down and

implementation
– Software process audits
– Software test witnessing

 Communication
– Software assurance and software safety planned

activities
– Metric and status reporting by software

assurance\safety
– IV&V plan and communication (if required)
– Software risks, findings or known issues

 Product reviews
– Major Milestone product reviews
– Software development product reviews
– Software metric data reviews

 Defect Tracking and Management
– Root causes analysis

Key Software Assurance Focus Areas

vsma.nasa.gov

 Planning (Ensuring Processes and
Determining Quality)
• Implementation of the Software Assurance

and Software Safety Standard, NASA-STD-
8739.8, requirements

• Software assurance\safety requirements
mapping matrix, review any tailored
requirements

• Tailoring of the specific requirements in
NASA-STD-8739.8

• # of projects tailoring each
requirement

• % of requirements tailored per
project

• Software assurance\safety approach, plan
and resource allocations

• Trending of Software Assurance cost
estimates throughout life-cycle

• Software assurance resource utilization
throughout life-cycle

• Software assurance\safety requirements flow
down into contracts

• Process Maturity of the software
development organization

Key Software Assurance Focus Areas

vsma.nasa.gov

 Analysis (Processes, Quality, Safe, and Analysis)
– Software requirements analysis

• Software requirements quality risk score
• Software Requirements Volatility trend
• # of TBD/TBC/TBR in the software requirements
• # requirements vs number of developed lines of code

– Software safety and hazard analysis
• Percentage of the software hazards that have defined completed

causes and verification approaches
• # of software requirements tracing to software hazards

Key Software Assurance Focus Areas

vsma.nasa.gov

 Analysis
– Software design analysis

• (Ensuring processes and
Determining quality)

• Software data dictionary fields are
correct. % of the Data dictionary
data definitions that are complete.

• % of design functions that traces to
the software requirements

– Software source code quality analysis
• (Determining quality)

• Code Quality Risk Assessment Scores
• Software cyclomatic complexity

Key Software Assurance Focus Areas

vsma.nasa.gov

 Analysis
– Software test analysis (Processes, Quality,

Secure, and Analysis)
• Code coverage data: % of code that has been

executed during testing
• % of software requirements that have been verified

or tested
• % of software test results reviewed by software

assurance
• # of independent software tests run by software

assurance and IV&

– Peer reviews (Processes, Quality)
• # of Peer Review Audits planned vs. # of Peer Review Audits

performed
• # of Non-Conformances identified in each peer review

Key Software Assurance Focus Areas

vsma.nasa.gov

 Static Analysis Tools Assessments
(Quality, Secure, and Analysis)
– Software cyclomatic complexity
– # of static analysis tools used to date
– # of errors and warnings evaluated vs. #

of total errors and warnings identified
by each tool

– # of Cybersecurity vulnerabilities and
weaknesses

– Total # of static code analysis
"positives" vs. # of "positives"
resolved. Trend over time.

Key Software Assurance Focus Areas

Filepath Line File / Method Code Checker Message Severity Severity State
/idata/tools/projects/scawg/psychc_build 108 CWE78_OS_Command_Injection__char_connect_socket_execlp_10_bad() recvResult = recv(connectSocket, (char *)(data + dat MISRA.PTR.ARITH Pointer is used in arithmetic or array index expression Review 4 Existing
/idata/tools/projects/scawg/psychc_build 122 CWE78_OS_Command_Injection__char_connect_socket_execlp_10_bad() if (replace) MISRA.STMT.COND.NOT_BOThe controlling expression of an if statement or loop statement has type 'char*' instead of 'Ess Review 4 Existing
/idata/tools/projects/scawg/psychc_build 110 CWE78_OS_Command_Injection__char_listen_socket_system_65_bad() recvResult = recv(acceptSocket, (char *)(data + dataLe MISRA.ETYPE.CATEGORY.DIFThe operands of the operator '-' do not have the same essential type category Review 4 Existing
/idata/tools/projects/scawg/psychc_build 63 CWE78_OS_Command_Injection__char_listen_socket_system_65_bad() void (*funcPtr) (char *) = CWE78_OS_Command_Injection_MISRA.FUNC.ADDR Address of function 'CWE78_OS_Command_Injection__char_listen_socket_system_65b_badS Review 4 Existing
/idata/tools/projects/scawg/psychc_build 68 CWE78_OS_Command_Injection__char_file_popen_53_bad() data[dataLen] = '\0'; MISRA.PTR.ARITH Pointer is used in arithmetic or array index expression Review 4 Existing
/idata/tools/projects/scawg/psychc_build 64 CWE78_OS_Command_Injection__char_file_popen_53_bad() if (fgets(data+dataLen, (int)(100-dataLen), pFile) == NMISRA.PTR.ARITH Pointer is used in arithmetic or array index expression Review 4 Existing
/idata/tools/projects/scawg/psychc_build 95 CWE78_OS_Command_Injection__char_file_popen_53_good() void CWE78_OS_Command_Injection__char_file_popen_53_UNUSED.FUNC.WARN Consider making 'CWE78_OS_Command_Injection__char_file_popen_53_good' static or add h Review 4 Existing
/idata/tools/projects/scawg/psychc_build 116 CWE78_OS_Command_Injection__char_listen_socket_system_65_bad() data[dataLen + recvResult / sizeof(char)] = '\0'; MISRA.ETYPE.CATEGORY.DIFThe operands of the operator '/' do not have the same essential type category Review 4 Existing
/idata/tools/projects/scawg/psychc_build 121 CWE78_OS_Command_Injection__char_connect_socket_execlp_10_bad() replace = strchr(data, '\n'); MISRA.ETYPE.ASSIGN.2012 An expression value of essential type 'Essentially Character' is assigned to an object of essentia Review 4 Existing
/idata/tools/projects/scawg/psychc_build 58 CWE78_OS_Command_Injection__char_file_popen_53_bad() if (100-dataLen > 1) MISRA.ETYPE.CATEGORY.DIFThe operands of the operator '>' do not have the same essential type category Review 4 Existing
/idata/tools/projects/scawg/psychc_build 47 CWE78_OS_Command_Injection__char_file_w32_execv_31_bad() void CWE78_OS_Command_Injection__char_file_w32_execvUNUSED.FUNC.WARN Consider making 'CWE78_OS_Command_Injection__char_file_w32_execv_31_bad' static or a Review 4 Existing
/idata/tools/projects/scawg/psychc_build 79 CWE78_OS_Command_Injection__wchar_t_connect_socket_popen_66b_goodG2BSink() void CWE78_OS_Command_Injection__wchar_t_connect_so UNUSED.FUNC.WARN Consider making 'CWE78_OS_Command_Injection__wchar_t_connect_socket_popen_66b_go Review 4 Existing
/idata/tools/projects/scawg/psychc_build 67 CWE78_OS_Command_Injection__char_file_w32_execv_31_bad() data[dataLen] = '\0'; MISRA.PTR.ARITH Pointer is used in arithmetic or array index expression Review 4 Existing
/idata/tools/projects/scawg/psychc_build 117 CWE78_OS_Command_Injection__char_connect_socket_execlp_10_bad() if (replace) MISRA.STMT.COND.NOT_BOThe controlling expression of an if statement or loop statement has type 'char*' instead of 'Ess Review 4 Existing
/idata/tools/projects/scawg/psychc_build 159 goodG2B() void (*funcPtr) (char *) = CWE78_OS_Command_Injection_MISRA.FUNC.ADDR Address of function 'CWE78_OS_Command_Injection__char_listen_socket_system_65b_good Review 4 Existing
/idata/tools/projects/scawg/psychc_build 60 CWE78_OS_Command_Injection__char_file_popen_53_bad() pFile = fopen(FILENAME, "r"); SV.TOCTOU.FILE_ACCESS function 'fopen' operates on file names and is vulnerable to race conditions. Files can be mani Review 4 Existing
/idata/tools/projects/scawg/psychc_build 111 CWE78_OS_Command_Injection__char_listen_socket_system_65_bad() if (recvResult == SOCKET_ERROR || recvResult == 0) MISRA.LOGIC.PRIMARY Operand in a logical 'and' or 'or' expression is not a primary expression Review 4 Existing
/idata/tools/projects/scawg/psychc_build 67 CWE78_OS_Command_Injection__char_connect_socket_execl_54e_badSink() void CWE78_OS_Command_Injection__char_connect_socke UNUSED.FUNC.WARN Consider making 'CWE78_OS_Command_Injection__char_connect_socket_execl_54e_badSin Review 4 Existing
/idata/tools/projects/scawg/psychc_build 109 CWE78_OS_Command_Injection__char_connect_socket_w32_execv_06_bad() if (recvResult == SOCKET_ERROR || recvResult == 0)MISRA.EXPR.PARENS.2012 The precedence of operators within expressions should be made explicit. Review 4 Existing
/idata/tools/projects/scawg/psychc_build 79 CWE78_OS_Command_Injection__char_connect_socket_execl_54e_goodG2BSink() void CWE78_OS_Command_Injection__char_connect_socke UNUSED.FUNC.WARN Consider making 'CWE78_OS_Command_Injection__char_connect_socket_execl_54e_goodG Review 4 Existing
/idata/tools/projects/scawg/psychc_build 116 CWE78_OS_Command_Injection__char_listen_socket_system_65_bad() data[dataLen + recvResult / sizeof(char)] = '\0'; MISRA.EXPR.PARENS.2012 The precedence of operators within expressions should be made explicit. Review 4 Existing
/idata/tools/projects/scawg/psychc_build 63 CWE78_OS_Command_Injection__char_file_w32_execv_31_bad() if (fgets(data+dataLen, (int)(100-dataLen), pFile) == NMISRA.PTR.ARITH Pointer is used in arithmetic or array index expression Review 4 Existing
/idata/tools/projects/scawg/psychc_build 114 CWE78_OS_Command_Injection__char_connect_socket_w32_execv_06_bad() data[dataLen + recvResult / sizeof(char)] = '\0'; MISRA.PTR.ARITH Pointer is used in arithmetic or array index expression Review 4 Existing
/idata/tools/projects/scawg/psychc_build 114 CWE78_OS_Command_Injection__char_connect_socket_execlp_10_bad() data[dataLen + recvResult / sizeof(char)] = '\0'; MISRA.ETYPE.CATEGORY.DIFThe operands of the operator '/' do not have the same essential type category Review 4 Existing
/idata/tools/projects/scawg/psychc_build 57 CWE78_OS_Command_Injection__char_file_w32_execv_31_bad() if (100-dataLen > 1) MISRA.ETYPE.CATEGORY.DIFThe operands of the operator '-' do not have the same essential type category Review 4 Existing

SCA Tool
CodeSonar
Cppcheck
HPFortify
Klocwork
SonarQube
Understand
coverity
FindBugs/SpotBugs
IKOS
JPL CAE SRUB
lgtm
OCLint
Parasoft C++
Polyspace
PRQA
RIPS
semmle
VI Analyzer (LabVIEW)

vsma.nasa.gov

 Audits (Processes, Quality, and Analysis)
– Software process audits

• # of Audits conducted by the project –
Planned vs. Actual.

• # of software work product Non-Conformances
identified by audits

• % of the software processes that have been
audited

– Software test witnessing
• % of software test witnessed
• # of findings identied in software test

witnessing

Key Software Assurance Focus Areas

vsma.nasa.gov

 Communication (Processes, Quality,
and Analysis)
– Software assurance and software safety

planned activities
• Completed\in progress\not started

software assurance and software safety
activities

– Metric and status reporting by software
assurance\safety

• # of Defect or Problem Reports
identified by SA vs. total # Defect or
Problem Reports

– IV&V plan and communication
• # of Severity 1 or 2 IV&V findings

o Found
o Addressed by the project

– Software risks, findings or known issues
• Total # of Non-Conformances over time (Open,

Closed, # of days Open, and Severity of Open)

Key Software Assurance Focus Areas

vsma.nasa.gov

Key Software Assurance Focus Areas

 Product reviews (Processes, Quality, and
Analysis)
– Major Milestone product reviews

• # of RFAs/RIDs identied by Software
Assurance

• # of RFAs/RIDs identified by milestone
• Status of the software entrance and exit

criteria meet at each review point
– Software development product reviews

• # of software Non-Conformances at each
Severity level for each software configuration
item (Open, Closed)

• # of software work product Non-
Conformances identified by life-cycle phase
over time

vsma.nasa.gov

Key Software Assurance Focus Areas
 Defect Tracking and Management

(Processes, Quality, and Analysis)
• # of issues open
• # of Cybersecurity vulnerabilities and

weaknesses identified
• # of open defects per release by severity

level
– Root causes analysis

• # of software work product Non-
Conformances identified by life-cycle
phase over time

• # of software defects per cause item

vsma.nasa.gov

Repeat The Thought

"What gets measured, gets managed." - Peter Drucker

The simple act of paying attention to something will cause you to
make connections you never did before, and you'll improve those
areas - almost without any extra effort.

vsma.nasa.gov

Repeat The Thought

"What gets measured, gets managed." - Peter Drucker

The simple act of paying attention to something will cause you to
make connections you never did before, and you'll improve those
areas - almost without any extra effort.

So, what are your currently measuring or paying attention to on
your software assurance project?

vsma.nasa.gov

Questions?

Tim Crumbley - NASA Software Assurance Tech Fellow
Cell: 256.783.5912
Email: tim.crumbley@nasa.gov

mailto:tim.crumbley@nasa.gov

	ESA Software Assurance Workshop
	NASA Software Assurance Program Goals�
	A Thought!
	Metrics
	Metrics
	Metrics
	Why Measure?
	Candidate Management Indicators Used On Software Projects�
	Objectives of the Software Assurance and Software Safety Standard
	Key Software Assurance Focus Areas
	Key Software Assurance Focus Areas
	Key Software Assurance Focus Areas
	Key Software Assurance Focus Areas
	Key Software Assurance Focus Areas
	Key Software Assurance Focus Areas
	Key Software Assurance Focus Areas
	Key Software Assurance Focus Areas
	Key Software Assurance Focus Areas
	Key Software Assurance Focus Areas
	Repeat The Thought
	Repeat The Thought
	Slide Number 22

