NTTData

Cybersecurity engineering i space SW products

SPA workshop September 2023 Patricia Rodríguez Dapena

26/08/2023 NTT_23-018_CYBERENG_PRE-v1.0

NTTData

Why the need?

Space-based services are more and more needed in essential services such as military, utilities, communications, aviation and emergency communications, etc. and therefore makes them particularly attractive for cyberattacks with unpredictable impacts.

Many examples of cyber-attacks in space systems. One example, in February 2022, a large number of satellite modems in Ukraine and elsewhere in Europe were subject to a cyberattack and disabled.

The proliferation of interconnection of space systems with other daily systems, as well as the role of other small satellites and NewSpace missions make the cybersecurity engineering an important matter.

There is not much guidance about how the cyber vulnerabilities are analysed and how the satellite systems, while being developed, are to be **built secure-by-design**.

Cybersecurity tackles different matters (e.g., **Secure systems**, Secure technology, Secure infrastructure and environment, Secure operations, Secure personnel and organizations...). This project for ESA will only focus on the first aspect of the problem: provision of guidance for the engineering of cybersecurity while space systems and in particular its SW is developed.

Industry days for ESA cybersecurity activities. 23.06.2022.

Organizations involved in the ESA Cybersecurity resilience strategy

- Implementation of individual security mechanisms through standardization and validation of security protocols
- Identification and implementation of reference architectures for spaceand ground-based data processing system.
- Integration of security into the ESA system engineering process

Cybersecurity definition and space

NTTData

Cybersecurity is the practice of defending computers, servers, mobile devices, electronic systems, networks, and data from malicious attacks.

Defending against loss of Confidentiality, Integrity, or Availability (C-I-A):

- Loss of confidentiality results in unauthorized disclosure of information.
- Loss of integrity can result in falsification of transactions as well as unauthorized modification or destruction of information.
- Loss of availability results in a temporary or permanent loss of access to critical resources or critical functionalities of a system, including safety related ones.

Cybersecurity engineering means the engineering of a cybersecure product. This is intended mainly to inject mechanisms or develop the product to avoid or reduce to the minimum the loss of C-I-A that might result in harm to Space operations and use, assets, or individuals.

Important definitions in Cybersecurity engineering:

ThreatsVulnerabilitiesAttack vectorsCybersecurity risksCybersecurity mechanisms

Cyberattacks on satellite systems

The threats can take various forms, for example:

- transmission of false data from an untrusted source,
- Spoofing attack,
- Jamming attack, or
- Malware (e.g., infecting ground-based systems such as satellite control centers)

Example of **potential consequences** of satellite cyberattacks are:

- The loss of satellite control that may force the satellite to re-enter the Earth's atmosphere and burn up or to collide with other space object.
- disruption of all communications and permanently damage the satellite by depleting its propellant supply or causing damage to its electronics and sensors.
- the data on board may be compromised or lost.

ESA project

NTTData

No guidance nor clear ECSS requirements for cybersecurity Engineering in space systems ESA Contract Ref: 4000136516/21/NL/AR/va - ESA ARTES ITT ref: AO/1-10773/21/NL/ND Title: INNOVATIVE MISSIONS AND TECHNOLOGIES

Budget Line: ARTES 4.0 Core Competitiveness Generic Programme Line Component A: Future Preparation (ARTES FPE 1A.108)

WP1000 and WP2000 objectives

State of the art

Analysis of existing specific standards or development guidelines

Analysis of references in the automotive domain

Analysis of different industries' frameworks

Cybersecurity analyses

Coding standards

SPACE standards

NewSpace standards and literature Safety vs. Security

GAP analysis ECSS-Q-ST-80Crev1 GAP analysis (ECSS-Q-ST-80-10 Draft) ECSS-E-ST-40C GAP analysis (draft rev 1) Other ECSSs ESSB CCSDS Conclusions from the Gap analysis

WP3000 objectives

Objectives: To create a hands-on guideline defining technical steps for cybersecurity engineering.

- Define the cybersecurity assessment activities and processes guidelines (mission agnostic).
 - background information, objective and scope, forms and report templates, reporting recommendations.
 - For each process the following information will be given as a minimum: overview, inputs, outputs, management and task descriptions.
 - A catalogue of vulnerabilities and threads will be defined.
 - A list of mechanisms to be implemented to make the SW more cybersecure will be provided.
- How to integrate safety and cybersecurity analyses and analyse their dependencies
- Include the results of case study

^{© 2023} NTT DATA Corporation

Part of draft TN3: TARA Analysis

The TARA methodology includes three activitie

- Cyber Threat Susceptibility Analysis (CTSA)
 - Step 1. Establish assessment scope
 - Step 2. Identify candidate Threats & Vulnerabilitie

Threat

Name

System Services

A attack

- Step 3. Eliminate implausible Threats
- Step 4. Apply scoring model

ent

Bootloader

software is

available. If

a a t l a a d a u

update

should check if

Req ID

REQ01

Step 5

• Step 5. Construct the threat matrix

Requirem Threat ID

TN3

T06

		ID	Th	reat	Name	Reference	ce		NT			Б		
nalvsis	1 Thursday			(as per T	'N3 lis	st)								
11419515		2	Th	reat reat	2	T2			step	2				
roo octivitioo		3	Th	reat	3	T3								
ree activities:														
sis(CTSA)	Threat ID TN3	Threat	t Name			Plausible	?							
Stop 2	T13	Activa Updat	te Firmware e Mode			Yes If fir respons emerger	Yes If firmware update mode is activated some expected response functions from engaging in reaction to an emergency or process malfunction can't be performed.							
& Vulnerabilities	Т40	0 Monitor Process State					consid	dered	in T21					
ts	Т60	T60 Automated Collection				Yes Atta	ickers	could eratio	sneak in <u>a of the s</u>	scripts to a	extra elf	ct information		
			ID			Name		Sev	erity	Probabi	ility	Risk Level		
			т05	;	Inte Com	er-Process municatio	n	(),8	0,7		0,56		
		_	T63	\$	Netw	vork Effect	S	(),6	0,7		0,42		
	Step	4	т06	;	Syste	em Service	s	(),8	0,5		0,4		
			T16	;	Loss o	f Availabil	ity	(),8	0,5		0,4		
Description	Exam	ple o	of Thr	eat	Risk	Scoring	g Spi	preadsheet		0,5		0,3		
Adversaries may abuse system ser	Probability severity	0,0	05 0,		0	0,20	0,4	0,80		0,5		0,3		
execute commands or programs	0.10	0.0	05	0.0	10	0.020	0.0	40	0.080	0.5		0.3		
execute malicious content by int	0,30	0,0	15	0,0	30	0,060	0,1	20	0,240	0.5		03		
creating services either locally of	0,50	0,0	25	0,0	50	0,100	0,2	00	0,400	0,0		0,0		
services are set to run at boot,	0,70	0,0	45	0,0	90	0,140	0,2	60 60	0,560	0,7		0,28		
achieving persistence (Create or	Modify Sy	stem	T22	2	Proce	ss Discove	ry	(),4	0,7		0,28		
Process), but adversaries can also	abuse serv	ices f	T56	;	Indica	tor Blocki	ng	(),4	0,7		0,28		
one-time or temporary ex				Net	unde Davie	-		,	,		,			
Adversaries may activate firmware	e d T11		Netw	ork Devic	e mn	(),4	0,5		0,2				
devices to prevent expected respon	fro		Disable Cr											
engaging in reaction to an emerge	s TO2 Disa			ordware		0,6		0,3		0,18				
malfunction. For example, devices	such as pro	otecti			Activa	te Firmwa	o Eirmwaro							
relays may have an operation mo	T13	3	Activa			(),6	0,3		0,18				

Draft TN3: TARA Analysis

The TARA methodology includes three activities:

- Cyber Risk Remediation Analysis (CRRA)
 - Step 6 Select mechanisms to mitigate.
 - Step 7 Identify plausible Counter Measures.
 - Step 8 Assess countermeasure merit.
 - Step 9 Identify an optimal Counter Measure solution.
 - Step 10 Prepare recommendations

DL=1

Low

NL=5

LL=3

RL=1

	REQ01	T06	System Service	ns M088	Filter Network Traffic
	REQ02	T30	Loss of Safety	M027	Safety Instrumented Systems
6	PE003	T16	Loss of Availabil	ity M026	Redundancy of Service
U	ILC000	Т30	Loss of Safety	M027	Safety Instrumented Systems
	REQ04	T24	Block Reporting Message	g M019	Out-of-Band Communications Channel
	REQ05	Vulnerability ID tn3	Vulnerability Name	Mitigation ID TN	3 Mitigation Name
				M088	Stack Canaries
		V01	Buffer Overflow	M089	Address Space Layout Randomization (ASLR)
				M090	Input Validation
		V02	Catch NullPointerException	M091	Use Null Object Design Patter
		V03	Heartbleed Bug	M092	Updated and patched version OpenSSL

														Miti	gations		Effectiv	veness o	f the mi	tigatio	n by thi	reat					
											C+		, 🗆	Mitigat	ion Nam	e	Cost	T05	T63	T06	T16	T23	T24	T30	T60		
											51	ep /	Dis	able or Re	emove Fe	eature	1			DM	15					Nama]
														or Pi	rogram					LM		Very low	L COST	mplomo	ntation o	name f mitigativ	an is afford
														Execution	n Prevent	ion	3	LM, NM			1	financia	al resou	irces. Ca	n be easil	y carried costs.	out without
	СМ	N	eutraliz	e		Limit	11-	DU	Detect	DI		Recove	er	СМ	Merit So	coring					2	Low co managea	ost. Imp ble in t	olementa erms of t	ation of m financial i out not of	nitigation resources a large m	has a mode . It may req agnitude.
	ID	NH= 9	мм= 7	NL= 5	LH= 7	<i>LM</i> = 5	LL= 3	DH= 5	<i>DM</i> = 3	DL= 1	RV= 9	RH= 7	<i>RIM</i> = 5	Utility	Cost	0/C Ratio					3	Medium terms o	n cost. T of finan	he imple	ementatio ources. It i	on of miti may requi	gation invol ire some sig
Ctore O	M019	T63	T16, T23		T63	T24						T16, T24	T23	54	5	10,8						specific budget allo High cost. Implementing mitigation involve					location. ves consider
Step 8	M011					T06			T06					8	1	8,0					4	IIIalicia	irresou	ices. it i	bud	get allocat	tion.
	<i>M</i> 046		T16		T23		T16		T23					20	3	6,7					5	Very high cost. Implementing mitigation demanding. It may require major inv				igation is or investr	very costly nents, acqu
	M016		Effecti	veness		Mit	tigation	Categor	y					12	2	6,0							tecł	nnologie	s and allo	cation of	significant r
			Very	, high	Dete DV=	ct Ne 7	eutralize NV=11	E Lim	nt Reco 9 RV:	əver =7																	
			Hi	igh	DH=	5	NH=9	LH=	7 RH	=5																	
			IVIE	aiuiii				LIVI-		-J													Q	2023 NTT		oration	

Step

Draft TN3: TARA Analysis main results

Case study and results of TARA use: FOSSASAT OBSW

NTT DATA

Recommendations to protect the SW system:

Creation					Threat or	
date	Identifier	Recommendation	Originator	Unit/s	vulnerability	Status
uate					mode origin	
25/08/2023	REC-001	The system should provide an alternative method for sending	M19	Network	T16, T23,	0
		critical report messages to operators. This could include using			T24. T63	
		radio/cell communication to obtain messages from field				
		technicians that can locally obtain telemetry and status data.				
		Out-of-band channels include, for example, local (nonnetwork)				
		accesses to information systems, network paths physically				
		separate from network paths used for operational traffic, or				
		nonelectronic paths such as the US Postal Service. Out-of-band				
		channels do not have the same vulnerability/exposure as in-				
		band channels, and hence the confidentiality, integrity, or				
		availability compromises of in-band channels will not				
		compromise the out-of-band channels. Not having these extra			2023 NTT DATA Corporation	
				•		1

Draft TN3: Reference Threads and vulnerability tables and Counter measures details

ID	Vulnerability N	lame	Mitigat ID TN	tion I I3	<i>Mitigation</i>	Ι	Mitigation N	lame			
			M088		N/A		Stack Cana	ries			
V01	Buffer Overflow		M089		N/A	Ado Rar	dress Space	Layout (ASLR)			
			M090	0	N/A		Input Valida	ition			
V02	Catch		M001		ΝΙ/Δ	Use	Null Object	Design			
V 0 Z	NullPointerExce	Threat			Threat No		Mitigation	Mitigatior	ID	Mitigation Nama	
V/03					IIIfedt No	ame	ID TN3	MITRE			
V 00					Communic	ation M011 h		M0942		Disable or Remove	
			T10	าดว	Throug					Feature or Program	
V04 Improper D Validatio	Improper Da	101	11092		Removal	ble	N4062	N/1020	Operating System		
	Validation				Media	1	10005			Configuration	
		тор	T160	റ ററാ	Disable Cr	ypto	NA042			Encrypt Sensitive	
$\sqrt{05}$	V05 Least Privile Violation			0.002	Hardware		101042	1010941		Information	
v 00			Τ1 / 1 /		Cliphoard	Data	N4012	N1051		Update Software	
		105				Dald				Maintenance	

NTT DATA

Draft TN3: Reference description of some Counter measures' techniques

NTTDATA

Coding standards

 Prevention mechanisms Removal mechanisms Protection mechanisms 	References	ISO/IEC TS 17961:2013/Cor 1:2016 - Information technology — Programming languages, their environments and system software interfaces — C secure coding rules . ISO/IEC TS 17961:2013/Cor 1:2016 SEI CERT Oracle Coding Standard for Java. https://wiki.sei.cmu.edu/confluence/display/java SEI CERT Coding Standard
		https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
		(for Android, C, C++, Java, Perl)
		CWE coding standard. MITRE. https://cwe.mitre.org/about/index.html https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
	Objectives	The use of coding standards (i.e., CERT, CWE, etc.) focused on the avoidance of cybersecurity vulnerabilities help to prevent known vulnerabilities (buffer overflow, secure passwords, secure function calls, deception, memory corruption bugs, etc.). Two main references can be used:
		 CERT: a secure coding standard maintained by the Software Engineering Institute at Carnegie Mellon University. It supports commonly used programming languages such as C, C++, and Java. In addition, the CERT Risk Assessment is defined, for each guideline included in the secure coding standard, to help determine the possible consequences of reicheting that angeific rule or recommendation. There are three sections to the wide

Draft TN4: Roadmap

Few example of issues still to be further developed:

- Strengthen the list of threads and vulnerabilities for different space systems and their relationship with defence mechanisms
- Test and validate the effectiveness of the defined defence mechanisms (Counter measures)
- Assess the exiting software analysis tools versus the cybersecurity coding rules
- Expand the requirements of the validation test environments of space systems to include the possibility of, for example, penetration testing
- Test and improve the TARA method on more SW systems (also define reference tables: cost, etc).
- Expand this guide to specialize it a) at the systems level, not just SW and b) for the subsystems ground segment, flight, operations
- Integrate the guide into the ESA Master Plan for security and cybersecurity
- Refine the ECSS standards to add cybersecurity Engineering and the TARA method (threads/mechanisms, etc)
- Define the Software (cybersecurity) criticality classification for space (as in ISO 21434 for automotive) and tailor the ECSS requirements for the projects.

Thank you!

FUTURE AT HEART