4-) MathWorks

Reducing risks and surprises with formal code verification
Security and DevOps

Dr. Martin Becker. The MathWorks, Inc.
Session 1: SW Security, Safety and Dependability

Room D001
© 2023, The MathWorks, Inc.

g ecsa

Software Product Assurance
Workshop 2023

European Space Astronomy (entre, Spain
25-28 September, 2023

Risk is growing with “New Space”: Complexity, agility, security, ...

DESIGN % i
DEV o OPS o=
- ",

12

11 ™

10 27
e e

ON

@ Agile

New inputs
& Plan

Product
Delivery

Alexander Martin
April 25th, 2023

m Technology

Hackers to show they can take over a
European Space Agency satellite

" _w. w_ W |

=2 Ehe Washington Post

TECH

Cyberattack knocks out satellite communications for
Russian military

Was it pro-Ukrainian hackers or Wagner rebels?

% By Joseph Menn

June 30, 2023 at 1:00 a.m. EDT

Reducing risks and surprises with formal code verification

This talk

“Measurements”

(chertaiwtgj

HVLQOWVL H:S /Q

Reducing risks and surprises with formal code verification 3

&\ MathWorks

Conclusion: Reducing Risks and Surprises

= Use formal methods reduce uncertainty
= Perfect match for security & safety concerns
= |dentify waste to minimize your effort

Typical Results:

* 60% less defects

« 3x faster development
* Less surprises

Reducing risks and surprises with formal code verification 4

Part I:
A powerful tool

to reduce uncertainty

Does this program fail? (1) — Conventional Tools

~l o U&= W=

o

—int where are errors (int input) {

int x, vy, k;

k = input / 100; CppCheCk:

x = 0 All okay.

y =k + 5;

while (x < 10) Cpp-lint:

{ . :
ey Whitespace warnings.
y =y + 3;

}

if ((2*k + 100) > 43)

{
y++;
x=x/ (x-Y); What about DIV/0Q?

} Write-many-test cases—

return x;

Reducing risks and surprises with formal code verification

4\ MathWorks

Does this program fail? (2) — Formal Code Analysis

int %, vy, k;

k = input / 100;

Check distribution

Proven: 100%

Code covered by verification @

=k + 5
Green (23)
while (x < 10)
{
Xt There are none!
y=yv 3
) (guaranteed)
if ((3*k + 100) > 43) 1001
{
NARE ~
X =2/ (2= 50- 100%
J b operator / on type /int 16 _
left: 10 2
return x; right: [-347 .. -2] 0-
] result: [-5 .. 0] Filos

Reducing risks and surprises with formal code verification

100% 100%

Functions Code operations

4\ MathWorks

Formal Code Analysis: Verification with Mathematical Certainty

1977 Theory of sound
approximation of
computer programs

1996 1st Ariane 5

rd How does it work?

Reducing risks and surprises with formal code verification 9

4\ MathWorks

Testing and pattern matching cannot provide certainty

Did you write this test case?

Forbidden zone

e all
test, fuzzing, ...)

o o Possible
=<-_ | trajectories

; i e Exponential complexity
Test of a few trajectories |’ (memory, time,...)!

“Program testing can be used to show the presence of bugs,
but never to show their absence!”

- Edsger Dijkstra, Computer Science Pioneer

https://www.di.ens.fr/~cousot/Al/IntroAbsInt.html Reducing risks and surprises with formal code verification 10

4\ MathWorks

Formal Code Analysis: Sound Math for Certainty & “Zero” Risk

E.g., simple* abstraction based on data ranges:

Forbidden zone

if (x < 0)
break: operator % on type int 32
—— left: [0..9]or11

Maximum number of iterations: [1..2] 1T (x 5 2 == 0) right: 2
result: [0 .. 1]
break;
Abstraction of the trajectories)
<«— |Parameter 'x' (int 32): 0 or[2 .. 8] or 10
return x;

Code covered by verification @

|b Exponentially faster than testing!

100
75 ‘ No False Negatives <> misses no bugs
501 100% 100% 100%
‘ Can prove absence of defects
251
o ' ‘ Works for large programs

Files Functions Code operations

https://www.di.ens.fr/~cousot/Al/IntroAbsInt.htm *Simplified! Advanced tools use polynomial abstractions

Part Il:
Efficient Use

Minimize Waste (gf') in Your Process*

Cl/cD

<
<

assign o review
/ \ BEDE /o
Customer o Customer Soviation Customer
value ° value permit Value

W1) Overproduction _ |
High lit
2) Waiting Times k% Higher Quality

)
W2)
W3) Handover/Transport
W4) Overprocessing m f / A Faster Development
W)H) Large Inventory/WiP

AL snlelace friction Q Lower Cost
M =Zerp?

*Puppet, State of DevOps Report, Portland, USA, 2021. | *J. Liker, The Toyota Way, McGraw-Hill, 2004.

setup . . . publish v review review |ntegrat|on
> branch >>wr|te code>> compile >>document>> commit >> run test >> rosults DA M results complete M pa | merge stream

&\ MathWorks

release
stream

Avoid defects at
“the source”

POLYSPACE

“ QUALITY MONITORING

No files added to this list yet.

To add a file to the list, use the right-click
menu or go to settings to add files on save.
See

Train developers | remrmes
Select a diagnostic to get maore information.
Less design
iterations
> BASELINE
> CONFIGURATION
®oAo 0O

example.cpp X = Settings

src »

example.cpp

simple_defect(
IREe =
X++

return 1 / x;

) {

G example.hpp

Ln 8, Col 1

Spaces:4 UTF-8

LF

C++

/— 4\ MathWorks

@

& N
14

FCA on the Cl system: Your Safety Net @

. Track Quality
Review Issues B em ewm oL @ Track Progress

6%\ - /”‘\ :
en ow 2 1 8

cceo Ak e

el YOE

8 Quality
: i i EEEEEl P ublish -
Quick FCA Submit) Trigger i el » 7 Engineer ".
- N\ cleaner code Cl . results
finds most N’ ; : ~——— Team
issues I N [S— leader
Developers
P - Deep FCA —
Source code finds remaining FCA Results
repository issues Server
notification notification

Reducing risks and surprises with formal code verification 15

It works! One example ...

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Bugs per developer (~CFR)

350%

‘ MathWorks:

Number of new features (~DF)

300%

o

typical
250% /
200%
typical /
ypica 150%
100% /
50%
1 1 1] 0% 1
1 2 3 4 0 1 2 4
Year Year

For more examples see www.mathworks.com/company/user_stories,
J. Liker, The Toyota Way, McGraw-Hill, 2004, and the State of DevOps report

16

Conclusion (again)

Exceptional teams grow with their tools

Hansei and Kaizen — reflect and improve
the process continually

A fool with a tool
is still a fool!

4\ MathWorks

Decide slowly, with consensus |

Secure and evolve team skills

Avoiding waste...it works! One example ...

Bugs per developer (~CFR) Number of new features (~DF)

Reducing risks and surprises with formal code verification

18

Conclusion: Reducing Risks and Surprises

= Reduces uncertainty and risk
= Perfect match for security & safety concerns
= |dentify waste to minimize your effort

A\/O,"O\ Typical Results:
WS @ ¢ 60% less defects

\m « 3x faster development

e Less surprises

Reducing risks and surprises with formal code verification

&\ MathWorks

19

http://www.polyspace.com/

	Default Section
	Slide 1: Reducing risks and surprises with formal code verification Security and DevOps
	Slide 2
	Slide 3: This talk
	Slide 4: Conclusion: Reducing Risks and Surprises

	Intro to SCA
	Slide 5: Part I: A powerful tool to reduce uncertainty
	Slide 6: Does this program fail? (1) – Conventional Tools
	Slide 7: Does this program fail? (2) – Formal Code Analysis
	Slide 9: Formal Code Analysis: Verification with Mathematical Certainty
	Slide 10: Testing and pattern matching cannot provide certainty
	Slide 11: Formal Code Analysis: Sound Math for Certainty & “Zero” Risk

	Idealer Workflow
	Slide 12: Part II: Efficient Use
	Slide 13: Minimize Waste () in Your Process*
	Slide 14
	Slide 15: FCA on the CI system: Your Safety Net
	Slide 16: It works! One example …

	Conclusion
	Slide 17: Conclusion (again)
	Slide 18: Exceptional teams grow with their tools
	Slide 19: Conclusion: Reducing Risks and Surprises

