
Guideline for ECSS Criticality Category A
Qualification of Flight Software

What are the concerns and what to look at
from a SW PA perspective

Andoni Arregui

2023-09-26
ESA SW PA Workshop, ESAC

GTD GmbH

Table of Contents

1. Motivation

2. ECSS Category A Software

3. The Guideline We Developed

4. Takeaways

Guideline for ECSS Criticality Category A Qualification of Flight Software 1

Motivation

Do we care?

What is this?

The Boeing CST-100 Starliner

Guideline for ECSS Criticality Category A Qualification of Flight Software 2

Do we care?

”We are no longer building hardware into which we install
a modicum of enabling software, we are actually building
software systems which we wrap up in enabling hardware.
Yet we have not matured to where we are uniformly
applying rigorous systems engineering principles to the
design of that software. These are serious and pervasive
issues that NASA will need to address in all of its programs
and certainly will be critical to space exploration
endeavors.”

Patricia Sanders –
NASA’s Aerospace Safety
Advisory Panel Chair

Guideline for ECSS Criticality Category A Qualification of Flight Software 3

European Need for Category A Software

Why does Europe need Category A Qualified Software?
• To continue being a player in international cooperation and
• achieving autonomy in access to space.

Revolution Space report

Guideline for ECSS Criticality Category A Qualification of Flight Software 4

European Need for Category A Software

Why does Europe need Category A Qualified Software?
• To continue being a player in international cooperation and
• achieving autonomy in access to space.

ATV 5 units flown between 2008 and 2015

Guideline for ECSS Criticality Category A Qualification of Flight Software 4

European Need for Category A Software

Why does Europe need Category A Qualified Software?
• To continue being a player in international cooperation and
• achieving autonomy in access to space.

Orion European Service Module 6 units contracted for the Artemis missions

Guideline for ECSS Criticality Category A Qualification of Flight Software 4

European Need for Category A Software

Why does Europe need Category A Qualified Software?
• To continue being a player in international cooperation and
• achieving autonomy in access to space.

I-Hab and ESPRIT Refueling Module Built for the lunar gateway

Guideline for ECSS Criticality Category A Qualification of Flight Software 4

European Need for Category A Software

Why does Europe need Category A Qualified Software?
• To continue being a player in international cooperation and
• achieving autonomy in access to space.

Space-Rider First one to be launched end of 2024

Guideline for ECSS Criticality Category A Qualification of Flight Software 4

European Need for Category A Software

Why does Europe need Category A Qualified Software?
• To continue being a player in international cooperation and
• achieving autonomy in access to space.

Mars Sample Return - Earth Return Orbiter

Guideline for ECSS Criticality Category A Qualification of Flight Software 4

European Need for Category A Software

Why does Europe need Category A Qualified Software?
• To continue being a player in international cooperation and
• achieving autonomy in access to space.

ADRIOS Launch in 2026

Guideline for ECSS Criticality Category A Qualification of Flight Software 4

ECSS Category A Software

ECSS Requirements for Category A Software

What is needed on top of the Category B requirements
• MC/DC Structural coverage
• Verification of additional Object Code

Guideline for ECSS Criticality Category A Qualification of Flight Software 5

E-ST-40 Requires

MC/DC structural coverage

Guideline for ECSS Criticality Category A Qualification of Flight Software 6

E-ST-40 Requires

Unique Cause MC/DC
This understanding of MC/DC is deprecated since 2001 (CAST-6 DO-178B)

Guideline for ECSS Criticality Category A Qualification of Flight Software 7

E-ST-40 Requires

What is needed on top of the Category B requirements
• Verification of additional Object Code

Guideline for ECSS Criticality Category A Qualification of Flight Software 8

Q-HB-80-04 Requires

Only statement, no decision coverage on object code?
Branches in object code will not be properly exercised. Example

Guideline for ECSS Criticality Category A Qualification of Flight Software 9

European Challenge with Category A Software

We are not used to it
• SW Engineering:

• Neither to comply with its requirements
• nor to produce the required evidence

• SW Product Assurance:
• Neither to interpret the evidences
• nor to ask the right questions

Guideline for ECSS Criticality Category A Qualification of Flight Software 10

European Challenge with Category A Software

Past Cat-A approaches sometimes flawed

• ATV MSU: Only does condition coverage on object code, no MC/DC1.
• ESM PDE: Requires atomic decisions, losing MC/DC error detection capacity

and seems to incorrectly assess object code traceability2.

1§5.2 in Category A Software Development for the ATV, Boudillet, Berthelier, Zekri, 2005
2§3.5 and §3.7 in Critical Software for Human Spaceflight, Preden, Kaschner, Rettig, Rodriggs,

2019

Guideline for ECSS Criticality Category A Qualification of Flight Software 11

Main Concerns with Category A Software

What are the main concerns left for Category A software?
1. Are the requirements detailed enough for the criticality level?

⇒ Quite subjective but Cat-A needs more concrete requirements Example

2. Has the implemented software logic been sufficiently tested?
⇒ MC/DC is required for Cat-A

Guideline for ECSS Criticality Category A Qualification of Flight Software 12

Main Concerns with Category A Software

What are the main concerns left for Category A software?
1. Has the executable production introduced object code that has not been

verified nor tested?
⇒ Verification of additional object code required for Cat-A

2. Have the requirements been validated on a sufficiently representative
platform and environment?
⇒ Validating on and closing on non fully representative platforms may hide errors

3. Has the ISVV activity been adequately carried out in accordance with the
required criticality level?
⇒ Tasks like IVE.CA.T3 do not even require unit tests to be cross-compiled for target

Guideline for ECSS Criticality Category A Qualification of Flight Software 13

Importance of MC/DC

MC/DC is a syntactical attribute of the source code
Restructuring source code on purpose will lower its error detection potential.

This complex decision:
bool complex_decision(bool a, bool b, bool c, bool d) {

return ((a && b) || (c && d));

}

Will require 4 tests to achieve MC/DC.

NOTE: The 4 test cases refer to the ones needed to achieve the so called masking MC/DC with a
number of tests 2 ⋅ ⌈√𝑛⌉, where 𝑛 is the number of conditions in the decision.

Guideline for ECSS Criticality Category A Qualification of Flight Software 14

Importance of MC/DC

Rewriting it as
bool complex_decision(bool a, bool b, bool c, bool d) {

bool result = false;

if (a && b)

result = true;

if (c && d)

result = true;

return result; }

Will only require 3 tests and will fail to detect a regression if the if (c && d)

decision is removed.

SW PA shall ask:
Did you enforce simple or atomic decisions in source code to cheat on MC/DC?

Guideline for ECSS Criticality Category A Qualification of Flight Software 15

Importance of Additional Object Code Verification

A flight software is usually
composed of more than only
the project source code:

Project Source Code

OS

libc

Project Object Code

libgcc Components

libc Components

OS Components

Bootloader
Components

Input Components Flight Software

Guideline for ECSS Criticality Category A Qualification of Flight Software 16

Importance of Additional Object Code Verification

Compilers & linkers introduce additional object code to flight
executable
The flight software is not only composed of your project source code!

Additional object code in flight software

1. Elements from the compiler library such as .udiv from libgcc

2. Elements from the standard C library not explicitly called by the source
code such as memset()

3. &c.

Guideline for ECSS Criticality Category A Qualification of Flight Software 17

Importance of Additional Object Code Verification

You won’t notice at first these functions being added
Adding a modulo operator on 64 bit integers will do this on SPARC V8
architectures:

unsigned long long int compute (unsigned long long int a, unsigned long long int b) {

return a % b; }

compute:
save %sp, -96, %sp
...
mov %i0, %o0
! This is such a hidden call
to libgcc function __umoddi3
call __umoddi3, 0
...
restore %g0, %o1, %o1

SW PA shall ask:
Are all function calls in your object code also
listed in your design?

Guideline for ECSS Criticality Category A Qualification of Flight Software 18

Importance of Additional Object Code Verification

The structure of your object code is not the same as your source code

1. Compilers generate extra branches where there were non in source code

2. Compilers rearrange execution paths within functions for optimization

Structural coverage on source code not sufficient
The project has no evidence that these new branches and path structures
have ever been exercised or verified.

SW PA shall ask:
Can you prove that your object code has no untested branches?

Guideline for ECSS Criticality Category A Qualification of Flight Software 19

The Guideline We Developed

The Contract

Contractual Context
The work has been carried out under ESA Contract No.
4000138220/22/NL/AS/adu since 2022.

• ESA aimed at the development of a method and its corresponding tools to
systematically promote ECSS Category B software to Category A.

• All the work has been carried out with great support of the ESA Technical
Officer Andreas Jung.

Guideline for ECSS Criticality Category A Qualification of Flight Software 20

Method and Tools

Method
• Step-wise systematic method to cover the two main gaps:

• MC/DC Coverage (Referenced by NASA-HDBK-2203; to be integrated in the NASA CAP)

• Verification of additional object-code (Often called object to code traceability)

• Best Practices and FAQs

Tools
• All open-source based (Alternatively proprietary tools can be used)

• Assist in the following tasks:
• Assess MC/DC coverage
• Gather structural coverage on object code (On a function basis)

• Construct function Control Flow Graphs in object code and assist in the
object code structural coverage assessment

Guideline for ECSS Criticality Category A Qualification of Flight Software 21

https://swehb.nasa.gov/display/7150/References+Table?desktop=true¯oName=report-table

Assessment of MC/DC

The method proposes a tool (mcdc-checker) to assess the source code
decission structure so that afterwards the standard tool gcov can be used to
assess MC/DC.

FT

B

FC

T

FT

A

T

F

BDD for 𝑎 ∨ 𝑏 ∧ 𝑐
Structural coverage equivalent to MC/DC

Guideline for ECSS Criticality Category A Qualification of Flight Software 22

Assessment of Object Code

The method helps assessing the existence of object code added during the
executable production and proposes tools to gather object code condition
coverage (occtre) and present it on the CFG of each function (asm2cfg).

Guideline for ECSS Criticality Category A Qualification of Flight Software 23

Some Self Criticism

We shall distrust the compiler for Category A software
1. Object code analysis information based on DWARF debug information

generated by the cross-compiler.
2. Does the cross-compiler and/or linker add additional object code we are not

detecting?

Use complementary tools for more independence
1. Assessment tools can come from different cross-compiler.

• Newer versions can be used.
• llvm analogous tools can be used substituting GCC/binutils.

2. Linker information to cross-check compiler generated information.
3. Completeness of bidirectional object to source code traceability can be

verified.
Guideline for ECSS Criticality Category A Qualification of Flight Software 24

Takeaways

Some Best Practices

Software PA shall ask if
1. Structural coverage data has been gathered only with unit tests or also

with validation tests.
2. Source code structural coverage has been gathered with non optimized

compilation.
3. Unit tests have been cross compiled and executed on target.
4. The project verified function symbols in object code that come from

outside of the project source code.

Guideline for ECSS Criticality Category A Qualification of Flight Software 25

Some Best Practices

Software PA shall not
1. Allow source code to be rewriten with only simple decisions (e.g., if

(A)).
2. Allow gathering structural coverage data only on optimized object code

(and not on source code).
3. Accept completeness of object to source traceability only because

source traces for all object code addresses have been produced.
4. Accept object code coverage is complete by checking all project source

code functions.

Guideline for ECSS Criticality Category A Qualification of Flight Software 26

	Motivation
	ECSS Category A Software
	The Guideline We Developed
	Takeaways

