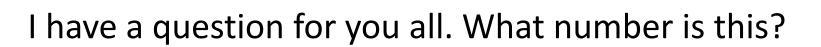
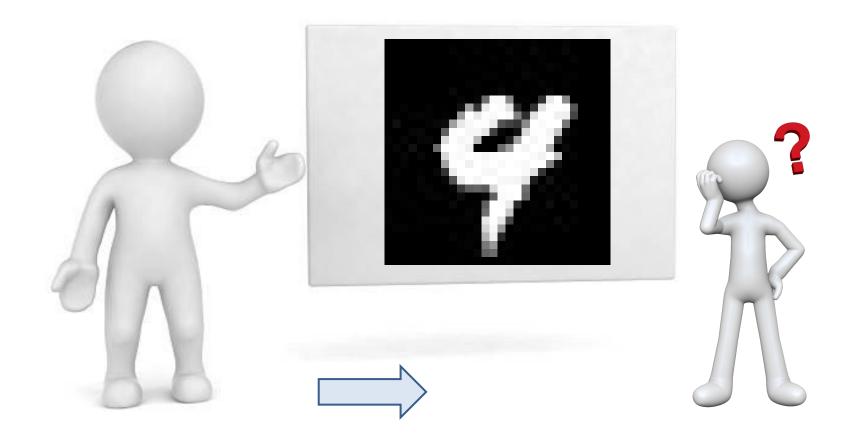
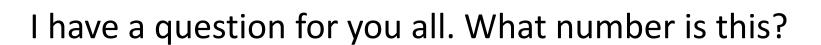


Development Process for AI Applications with Uncertainty and application examples

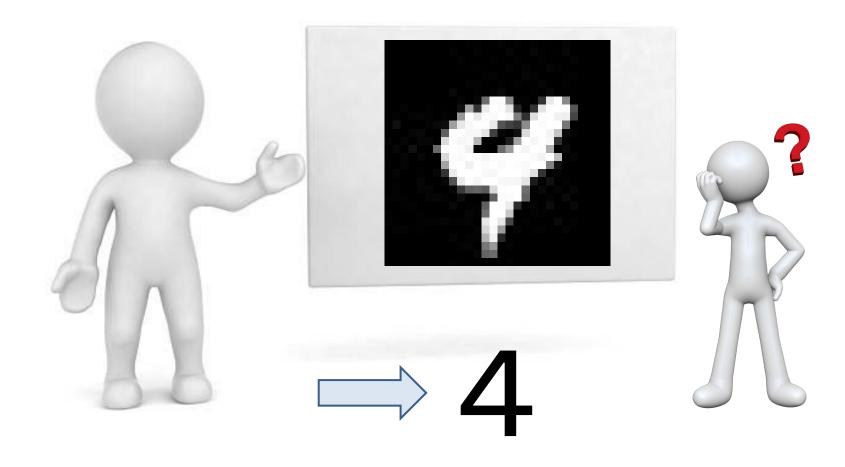

ESA Software Product Assurance Workshop 2023

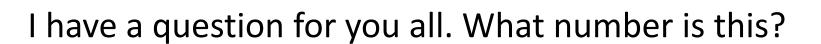
Japan Aerospace Exploration Agency Naoki Ishihama, Masa Katahira

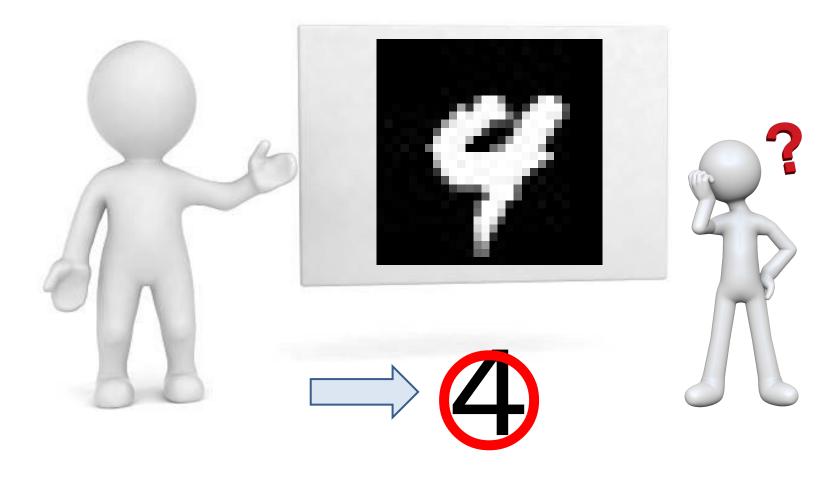

Outline

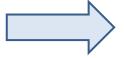


- About Al
- Different between legacy system and AI system
- Causes of False Reasoning of Al software
- Strategic Solutions for uncertainty during reasoning
- Al system development process





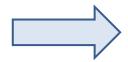




Deep Learning

I have a question for Deep Learning. What number is this?

Deep Learning



...and...

Probability of "4" 60.6%.

...and...

Probability of "9" 39.4%.

4

I have a question for Deep Learning. What number is this?

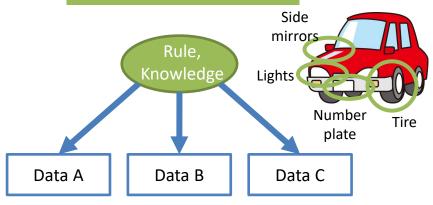
Deep Learning

...and...

Probability of "4" 60.6%.

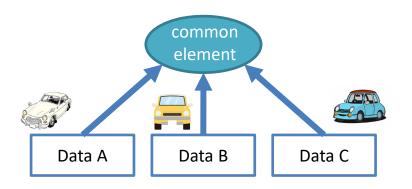
...and...

Probability of "9" 39.4%.


System Requirement Analysis Phase
System Design Phase
Software Requirement Phase
Software Design Phase
Software Coding Phase
Software testing phase
Software release
System test phase
System deploy
System operational phase

Legacy System

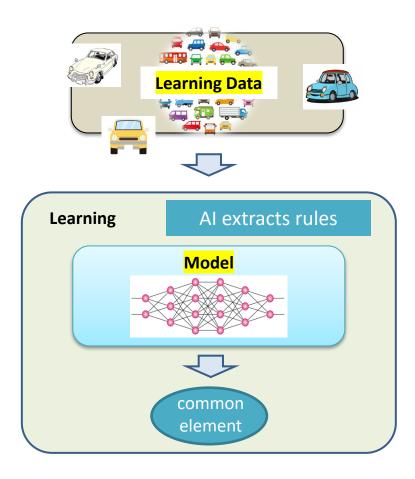
Deductive Reasoning Humans give rules (Rule-based)



Reasoning based on predetermined rules, knowledge, and principles

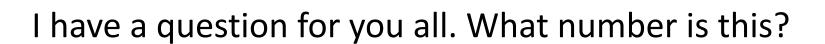
Al machine learning System

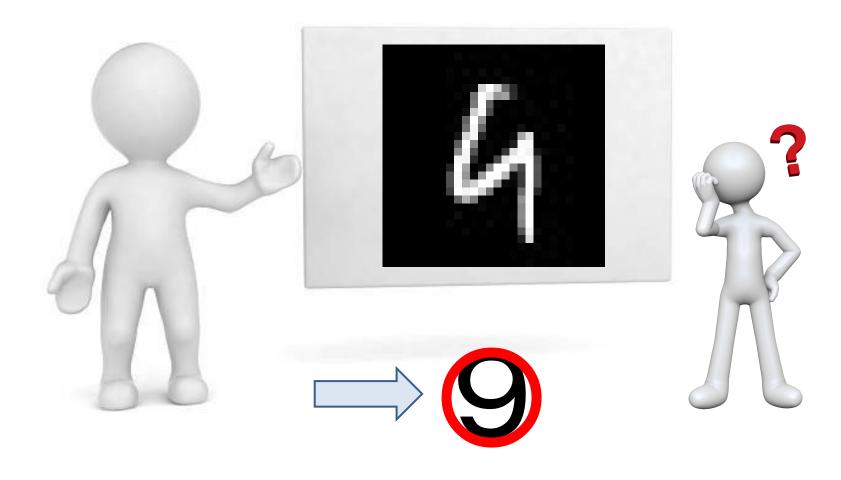
Inductive Reasoning


Al extracts rules (Machine Learning)

Reasoning based on commonalities extracted from many specific cases

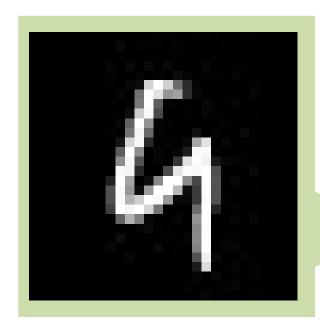
Al software


Al system development process

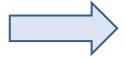

Phase	Summary
System Requirement Analysis Phase	Analyze use cases (system usage scenarios, external factors, etc.) and identify/clarify the system requirements.
System Design Phase	Design the architecture of the system (hardware and software).
Al Software Requirement Phase	Identify/clarify the <u>AI software functions/non-functions</u> requirements
Al Learning preparation phase	<u>Prepare and preprocess training data</u> based on use cases and requirements, etc.
Al learning phase	Build the AI Software model and train by using the preparing data until met to the requirement
Al test phase	Perform reasoning tests on the trained AI software model using test data and <u>validate the reasoning results</u> .
Al software release	Al software unit verification completed
System test phase	Do the system test including whole software and verify and validate for system requirement.
System deploy	Ships products
System operational phase	Monitor conditions during operation. When unexpected conditions occur, saved the data and do post hoc analysis.

Difference between "legacy system" and "Al system" development process

Legacy system development process	Al system development process	
System Requirement Analysis Phase		
System Design Phase		
Software Requirement Phase	Al Software Requirement Phase/ Al Learning preparation phase	
Software Design Phase	Al learning phase	
Software Coding Phase	AI learning phase	
Software testing phase	AI test phase	
Software release	AI software release	
System test phase		
System deploy		
System operational phase		



I have a question for you all. What number is this?



Deep Learning

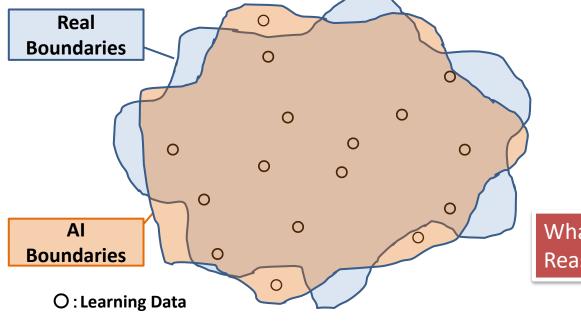
...and...
Probability of "4" 92.2 %.
...and...
Probability of "9" 7.8%

False Reasoning

False Reasoning type and reason

False Reasoning Type:

- All answers what it knows as something else.
- Al cannot identify what it knows.
- All answers what it does not know as what it does know.


False Reasoning type and reason

False Reasoning Type:

- All answers what it knows as something else.
- Al cannot identify what it knows.
- All answers what it does not know as what it does know.

Why do make false reasoning?

What is the Causes of False Reasoning??

Causes of False Reasoning

=> Model and Data Uncertainty

Cause A1: **No training data** for reasoning object

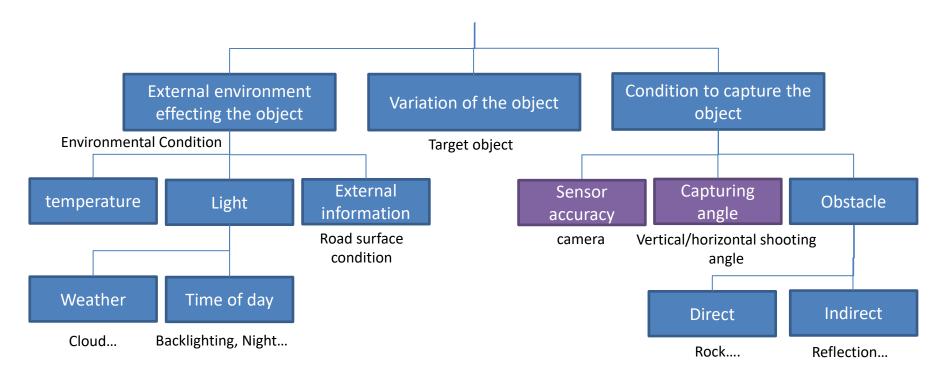
Cause A2: <u>Insufficient variation</u> in training data for reasoning object

Cause A3: <u>Insufficient training</u> data for reasoning object taking into account <u>external and internal</u> <u>factors</u>

Cause A4: **Insufficient quantity or poor quality** of training data for reasoning object

Cause B: Includes <u>different training data</u> from the inference target

=> Data Uncertainty


Cause C: Insufficient model

=> Model Uncertainty

Cause D: Incorrect implementation

Cause	Solution
Cause A: Insufficient training data	Solution1: Prepare necessary and sufficient training and test data using systematic methods

Cause	Solution
Cause A: Insufficient training data	Solution1: Prepare necessary and sufficient training and test data using systematic methods

..... Difficult to prepare 100% of the necessary and sufficient data

Cause	Solution
Cause A: Insufficient training data	Solution1: Prepare necessary and sufficient training
	and test data using systematic methods

..... Difficult to prepare 100% of the necessary and sufficient data

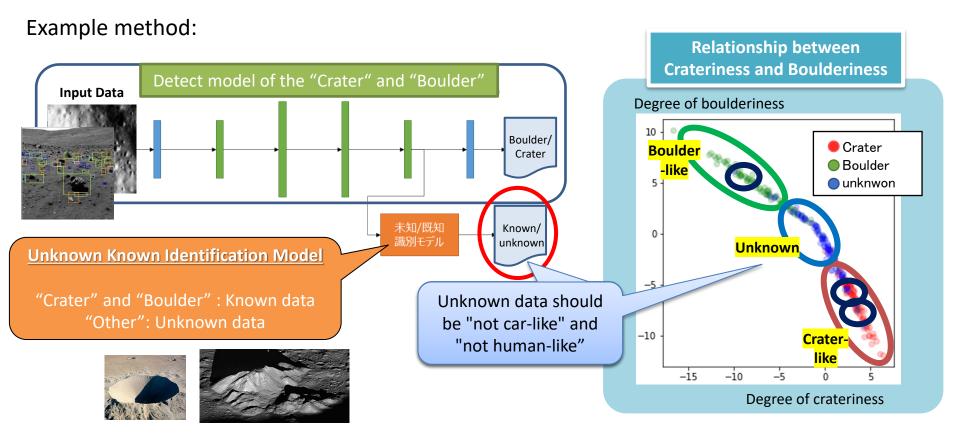
Cause	Solution
Cause A: Insufficient training data	Solution2: Identify the incorrect reasoning results

Cause	Solution
Cause A: Insufficient training data	Solution2: Identify the incorrect reasoning results

Breakdown the "Cause" and "Solution"

Cause	Solution
Cause A1: No training data for reasoning object	Solution2-2: Identify the change of input data trend
Cause A2: <u>Insufficient variation</u> in training data for reasoning object	Solution2-2: Identify the change of input data trend Solution2-3: Identify incorrectly captured features Solution2-4: Identify ambiguous reasoning results
Cause A3: Insufficient training data for reasoning object taking into account external and internal factors	Solution2-2: Identify the change of input data trend Solution2-4: Identify ambiguous reasoning results
Cause A4: Insufficient quantity or poor quality of training data for reasoning object	Solution2-1: Identify misalignment and inconsistency in data distribution Solution2-2: Identify the change of input data trend Solution2-3: Identify incorrectly captured features Solution2-4: Identify ambiguous reasoning results

Solution
Solution2: Identify the incorrect reasoning results
Solution2-1: Identify misalignment and inconsistency in data distribution
Solution2-2: Identify the change of input data trend
Solution2-3: Identify incorrectly captured features
Solution2-4: Identify <u>ambiguous</u> reasoning results



Solution2-2: Identify the change of input data trend

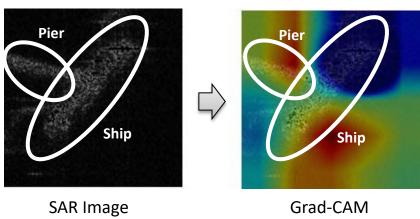
AI is answering what it doesn't know

- Identifies Crater and Boulder and Rims of different shapes and sizes

Solution2-3: Identify **incorrectly captured features**

Recognize the incorrect way of remembering

- The AI is answering by looking at the characteristics of the surrounding environmental information, not the object to be identified.


Ex: The AI sees a pier as a feature and answers "ship".

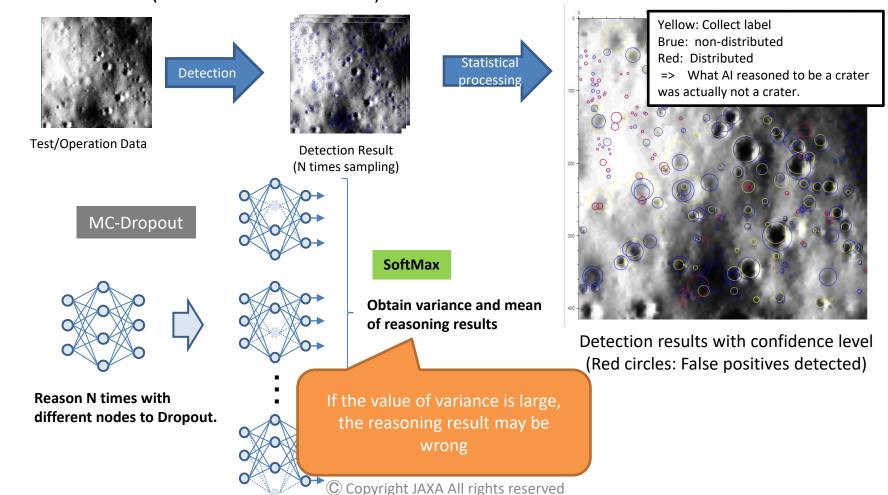
=> Reason: Since the image of the vessel shows a pier, the AI extracted the pier as a common feature

Example method:

Grad-CAM: This method visualizes where the AI focused its attention and gave an answer.

Ex: Classification task (Ship)

(Classification task)



Solution2-4: Identify **ambiguous** reasoning results

Detect that AI made a mistake because it remembered something halfway.

Ex: Detection task ("Crater" and "Boulder")

Cause	Solution
Cause A: Insufficient training data	Solution1: Prepare necessary and sufficient training
	and test data using systematic methods

..... Difficult to prepare 100% of the necessary and sufficient data

Cause	Solution
Cause A: Insufficient training data	Solution2: Identify the incorrect reasoning results

..... Difficult to identify 100% of the incorrect reasoning results

Cause	Solution
Cause A: Insufficient training data	Solution1: Prepare necessary and sufficient training and test data using systematic methods

..... Difficult to prepare 100% of the necessary and sufficient data

Cause	Solution
Cause A: Insufficient training data	Solution2: Identify the incorrect reasoning results

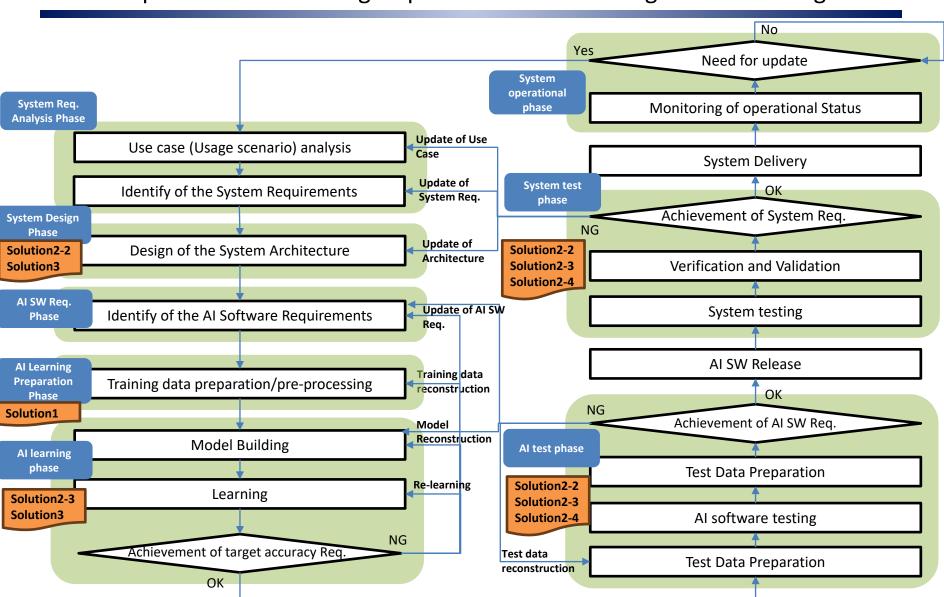
..... Difficult to identify 100% of the incorrect reasoning results

Cause	Solution
Cause A: Insufficient training data	Solution3: Take measures at the system level

Cause	Solution
Cause B: Including the incorrect training data	Solution4: Identify no mislabeled data and no non-inferred data included => Solution2-1: Identify misalignment and inconsistency in data distribution

..... Difficult to identify 100% of the incorrect reasoning results

Cause	Solution
Cause B: Including the incorrect training data Solution	tion3: Take measures at the system level


Cause	Solution
Cause C: insufficient model	Solution5: Rebuild the model to meet the requirement => general method

Cause	Solution
Cause D: Incorrectly implemented	Solution6: Review and test as legacy software development => legacy method

Al system development process:

- development flow including requirements for avoiding false reasoning

Al system development process: (Example) System design phase

Activity Requirement:

- Architectural design shall be performed based on the system requirements and constraints.
- To identify functional and non-functional requirements for each sensor, actuator, computer system, and other hardware based on the driving scenario, and to design the placement of each sensor and actuator.
- The following requirements for learning and test data preparation shall be identified without omission.
 - Architectural design information (e.g., placement), Hardware characteristics, External environmental conditions affecting the hardware
- The architectural design shall meet safety requirements.

Requirement for uncertainty during reasoning:

- A function that can detect changes to input data shall be provided, since changes in usage scenarios, changes in identification targets, and changes in environmental conditions may occur after shipment.
- After shipment, a function shall be provided to monitor the status during operation and save data in which unexpected situations occur.
- Al software may output unexpected inference results, so the design shall take this into account.

Input:

- Use Case
- Identified target
- System Req. Specification

Output:

- Architecture Design Specification
- Sensor/Hardware specification

Summary

- Causes of False Reasoning of Al application
- Strategic Solutions for uncertainty during reasoning
- Al system development process
 - Activity Requirement
 - Requirement for uncertainty during reasoning
 - Including example method to identify the false reasoning
 - Input and Output

なぜ人は宇宙をめざすのだろう? 僕たちはいったいどこに向かうのだろう?

Thank you for your attention!

人類の 未知への挑戦を。

HUMAN POSSIBILITIES

さあ、次の冒険へ。

Our Story

HUMANS IN SPACE

はじめる

