

Gapless Verification with the 'Digital Thread' – State of the Art and Practical Challenges

María Fernández – Application Engineer @ MathWorks

Software Product Assurance Workshop 2023 27 – September – 2023

Common Challenges of Space Systems Development

Strict cost, weight Strict deadlines \$ and power budgets Large teams High-integrity software having to development & testing coordinate

Why did we miss our deadline?

Reasons for late projects, as reported by Venture Development Corporation. Source: Embedded Software Strategic Market Intelligence report, Volume 4, December 2007, VDC. Note: Percentages sum to over 100% due to multiple responses.

Minimize Costs by Detecting Errors Earlier

Source: B. Boehms and V. Basilli, "Software Defect Reduction Top 10 List", IEEE Computer

"...each delay in the detection and correction of a design problem makes it <u>an order of magnitude more</u> <u>expensive</u> to fix..."

Clive Maxfield and Kuhoo Goyal "EDA: Where Electronics Begins" TechBites Interactive, October 1, 2001 ISBN: 0971406308]

Trending Satellite Technologies

- Broadband communications constellations with advanced phased array technology
- Autonomous Rendezvous and Proximity Operations including satellite servicing
- Optical Earth-imaging with very fast revisit times
- Radar sensing (Synthetic Aperture Radar)

Trend: Machine Learning / Deep Learning

- Telemetry outlier detection
 - Call attention to a potential spacecraft anomaly

- Geospatial analytics
 - Derive business insights from satellite data

Digital Engineering Main Principles

Model-Based Space Vehicle Design Process

Executable model as the source of "truth"

DevOps – An Agile and Iterative Development Approach

Here some customer reference of Model-Based Design

NASA - Orion GN&C: MATLAB and Simulink Modeling Standards

ESA and Airbus Create Upper-Stage Attitude Control Development Framework Using Model-Based Design

Challenge

Speed the development of software for controlling complex launcher upper stage missions including the attitude of satellite payloads after they separate from ESA launch vehicles

Solution

Use Model-Based Design to develop controller models and multidomain physical models, run closed-loop simulations, and generate code for PIL testing

Results

- Design iterations reduced from one week to one day
- Failure modes modeled and eliminated
- Comprehensive design framework established

Propellant motion in spinning upper stages at 46, 350, and 600 seconds. Distribution after 350 seconds becomes uneven

"Model-Based Design multiplies the range of capabilities that I have as an engineer. As an individual control engineer I can do what previously took a handful of engineers, because I can create and simulate my own multidomain models. I don't have a wall around me anymore; I am able to better communicate and contribute across disciplines."

- Samir Bennani, ESA

Model-Based Design: From Concept to Code

MathWorks Products Overview

MATLAB The Language of Technical Computing

SIMULINK Simulation and Model-Based Design

MathWorks Products Overview

MATLAB The Language of Technical Computing

SIMULINK Simulation and Model-Based Design

Wireless Communications \mathbf{r}

Deep Learning

Control Systems

Computer Vision

n Signo

Robotics

MathWorks Products Overview

Space System Engineering Workflow

Space System Architecture Design

- Develop architectures
- Allocate requirements
- Perform trade studies and analyses

Requirements Management Integrate with requirements tools and author requirements

Requirements Management Roundtrip workflow with external tools thru ReqIF

S	Simulink	Requireme	ents]	
External Requirements					
 Crs_req Import1 References to crs_req.docx 1 Overview 2 System overview 2.1 System inputs 2.2 Cruise control mode indicator 			x tor		
	Auth	nored Requir	emen	nts	
	<pre></pre>	func_spec Driver Switch R Switch precede Avoid repeating Long Switch red Cancel Switch I	equest ince g comma cognitio Detectio	Hand ands n n	lling

- Import from:
 - Word / Excel
 - IBM® Rational® DOORS®
 - ReqIF[™] standard
- Update synchronizes changes from source
- Edit and add further details to import
- Author requirements
- Export ReqIF
 - Enables roundtrip with external tools

Space System Engineering Workflow

Spacecraft Subsystems Workflow

Software Module Development Workflow

Software Module Development Workflow

Communications system design in Simulink

Power system design in Simulink

GNC Algorithms

Attitude control system design in Simulink

Copyright 2018-2019 The MathWorks, Inc.

Software Module Development Workflow

Software Module Development Workflow

What's Next: From Design To Production with Model-Based Design

- Link requirements directly to designs
- Integrate testing with design
- Automatically generate standards compliant C/C++ code for embedded processors
- Automatically generate Verilog and VHDL code for FPGA programming or ASIC prototyping and design

Polyspace product family for C/C++

- Polyspace Code Prover
 - Proves code to be safe and dependable
 - Deep verification of software components
 - Perform QA signoff for production ready code
- Polyspace Bug Finder
 - Quickly find bugs in embedded software
 - Check code compliance for MISRA and JSF
 - Intended for every day use by software engineers

Some of the Global Software Standards

- There are many government/agency standards that can apply to space systems software development
 - NASA: NPR 7150.2 NASA Software Engineering Requirements AnthWorks[®]
 - European Space Agency: ECSS-E-ST-40C Software general requirements A MathWorks®
 - and others...
- Companies also have internal standards
 - These standards can be applied to internal projects, or commercial customer programs that do not require a government standard

NASA Software Engineering Standard

 MATLAB and Simulink High Integrity Development Workflow mapped to NASA standard

Orion Modeling Standards

 Orion MATLAB/Simulink Standards authored by NASA

ECSS Software Standards

- ECSS E-40 and ECSS Q-80 workflows developed
- ESA Autocoding Working Group developing "Guidelines for the Automatic Code Generation for AOCS/GNC Flight SW Handbook"
 - Provides detailed modeling and coding guidelines to European space industry

Software Module Development Workflow

Thanks!

mariaf@mathworks.com

