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AUTONOMY IN SPACE SYSTEMS
▪ Future space missions need to address several challenges:

▪ Scientifical, technical and performance such as mission/scientific 
return, communication delays, environment uncertainty, 
responsiveness, availability, and reliability

▪ Complexity in design, development, AIT, and operation, with elevated 
costs at ground segment both for personnel and equipment

▪ Autonomy is considered a must to improve on the criteria above

▪ It is defined as the capability to act without human or other systems 
intervention

▪ ECSS-E-70 defines 4 autonomy levels: E1 (telecommand), E2 (time-
tag), E3 (event-driven) and E4 (goal-commanding)

▪ More missions develop and employ autonomy mostly at function-level, 
with the system/mission-level in view, and mainly at E3 (e.g., OBCPs)
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# Mission Type
Environment
uncertainty

TC-TM Links
Plan 

complexity
Autonomy

1 Orbital mission Low Almost permanent Medium-High E1,E2,E3,E4 (i.e., EO-1)

2 Deep space Medium High latency Medium E1,E2,E3,E4 (i.e., DS1)

3 Planetary exploration High
High latency / 
Communication windows

High
E1,E2,E3 (i.e., Curiosity/
Opportunity)

Orbital Mission Deep Space Mission 

Planetary Exploration Mission
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MACHINE LEARNING IN ON-BOARD SOFTWARE

▪ Autonomy can be achieved through standard algorithms or Artificial Intelligence (symbolic, Machine 
Learning, and integrative)

▪ Three paradigms for ML: supervised, unsupervised and reinforcement learning

▪ Compute the estimation of a function f, given a set of inputs and possibly known set of outputs (e.g., 
reinforcement learning)

▪ Use in space systems for:

▪ Detection and classification (e.g., Φ-sat-1/2, 
MoonNet)

▪ Navigation (e.g., ArgoMoon)

▪ Anomaly detection and prediction 
(e.g., ArgoMoon)

▪ Control optimization

▪ Drawbacks:

▪ Black-box component

▪ Data quality dependent 

▪ Non-deterministic (stochastic) behaviour

▪ Ill-suited at system level
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A state-of-the-art of ML techniques
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CHALLENGES FOR ON-BOARD ML (1/2) 

▪ Development lifecycle: 
▪ Different paradigm focusing on data and models, 

rather than SW

▪ Validation and testing: 
▪ Data correctness, since ML model correctness depends 

on it 
▪ ML model correctness criteria, since such components 

are often black-boxes lacking a formal specification 
▪ ML model prediction uncertainty and quantification of 

the error impact 
▪ ML model coverage criteria and adequate data for 

testing

▪ Verification: 
▪ ML model correctness criteria formalization 
▪ Inherent complexity of the verification approach 
▪ Scalability of state-of-the-art techniques
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MLOps development approach
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CHALLENGES FOR ON-BOARD ML (2/2) 

▪ Safety and dependability assurance: 
▪ ML model prediction uncertainty, 
▪ Complexity of explainability

▪ Relevant impact on the system RAMS and criticality analysis

▪ Product assurance: 
▪ Process for assured ML model development and deployment,
▪ Quality model regarding the main features of ML models
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SOFTWARE PRODUCT ASSURANCE FOR 
AUTONOMOUS ON-BOARD SOFTWARE (PASSIONS)

▪ Aim: Study the impact of using ML-based on-board software in the software product assurance activities 
and propose guidelines enabling the safe and reliable deployment of autonomous on-board software

▪ Cover the use of autonomy in ongoing and upcoming space missions and identify the needs of such 
systems to correctly operate

▪ Cover completed and ongoing standardisation activities that aim to provide guidelines for the 
development of autonomous systems

▪ Provide a definition of correct autonomous systems in terms of safety and dependability and associated 
development, verification and validation techniques that are representable through quality metrics

▪ Provide a set of guidelines and requirements in the form of amended ECSS standards that are 
immediately usable for space missions

▪ Consortium: GMV Spain (prime), Fondazione Bruno Kessler

▪ Duration: 01/12/2022 – 31/11/2023
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DEVELOPMENT LIFECYCLE
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Validation of 
data sets

Learning 
management

Validation of 
the trained 

model wrt TS

Validation of 
data sets

Validation of 
the inference 
model wrt TS

Validation of 
data sets

Data 
management

Data 
management

Data 
management

Implementation
management

▪ Based on the ECSS described activities

▪ Data lifecycle with dedicated activities for data sets production and validation

▪ Model lifecycle with dedicated activities for trained and inference model production and validation
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DATA LIFECYCLE

▪ Produces the training, validation and testing data sets and ensures their quality for the obtention of an 
adequate ML model

▪ Starts from the Technical Specification definition, which includes the specification of the data sets 
requirements

▪ For example, data needed, origin, annotation process, completeness and representativeness, dependency 
relations, accuracy, precision, etc.

▪ Data management includes the main activities for the (i) collection, (ii) labelling, (iii) preparation and (iv) 
splitting of the data sets 

▪ Validation of the data sets includes checking the data sets quality and the other requirements set in the 
Technical Specification

▪ Each step of the data management and validation shall be documented together with the quality results 
obtained in a dedicated deliverable, e.g., Data Design Document

▪ The data management and validation are performed for PDR, with new iterations for the next milestones if 
any changes occur (e.g., new data becomes available from operations)
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DATA QUALITY MODEL

▪ Based on available standards such as ISO/IEC 25012, ISO/IEC 25024, ISO/IEC CD 5259-2 and  guidelines 
from ESA and EASA

▪ Some characteristics:

▪ Representativeness: statistically accurate for the data distribution

▪ Completeness: includes values for all attributes and related entities

▪ Consistency: free of contradictions and coherent with other data

▪ Relevance: suited for the context it is used in

▪ Balance: distribution of data for all dimensions

▪ Accuracy: correctly represents the true value

▪ Precision: exact representation needed

▪ The quality model shall be tailored according to the scope of the ML-based system, including the 
measurable characteristics, appropriate metrics and target values
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DATA TECHNIQUES

▪ For quality:

▪ Data quality improvement: combination of data profiling, cleaning 
validation and other processes to ensure that models and further analysis 
are based on accurate and reliable information

▪ Data visualization: graphical representation of data through charts, 
plots, etc. allowing to understand  complex data relationships and validate 
statistical data sets properties (e.g., representativeness, completeness, 
balance)

▪ For improved ML performances:

▪ Feature engineering: selecting, creating or transforming features 
through pre-processing such that they are suitable for the chosen 
algorithm

▪ Data augmentation: creating new data through predefined 
transformations (e.g., rotation, scaling, translation, flipping, cropping, 
noise injection) of the original data in order to improve the generalization 
and robustness of the model

▪ Dimensionality reduction: data reduction to lower dimensionality (most 
useful features) without losing general information
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Scatter plot

Bar plot

Box plot

Heatmap

Data augmentation 
with rotation, flip, 
and Gaussian filter
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MODEL LIFECYCLE (1/2)

▪ Produces in several steps the inference model part of the ML constituent and ensures its quality and 
Technical Specification satisfaction

▪ Distinguishes between the trained model obtained through the training and optimization phase, and the 
inference model obtained through the implementation phase on the trained model (i.e., the executable 
model targeted to the deployment environment)

▪ The ML constituent embeds the inference model together with pre- and post-processing components and 
it is considered as part of the SW
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Architecture of an ML-based system
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MODEL LIFECYCLE (2/2)

▪ Starts from the Technical Specification definition which includes the specification for the trained model, 
inference model and ML constituent

▪ Learning management includes the main activities for obtaining the trained model: (i) architecture(s) 
implementation, (ii) training with the training data set, (iii) validation with the validation data set, (iv) 
selection of the best model according to cost/loss function, and (v) optimization of the selected model

▪ Implementation management includes the main activities for obtaining the inference model: (i) 
implementation of the trained model for the target architecture, and (ii) validation with the testing data set

▪ Validation of the trained/inference model wrt Technical Specification includes the verification and validation 
activities for ensuring the trained/inference model quality and satisfaction of set requirements

▪ Learning/implementation management and the corresponding model validation are performed for Model 
Design Review/TRR, accordingly

▪ Each step of the learning/implementation management and validation shall be documented together with 
the quality results obtained in a dedicated deliverable, e.g., Model Design Document
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EXTENDED SW QUALITY MODEL
▪ Based on available standards such as ISO/IEC 25010, ISO/IEC DIS 25059 and guidelines from EASA
▪ Metrics are defined for the new characteristics, but also existing ones such as efficiency and reliability
▪ The quality model shall be tailored according to the scope of the ML-based system
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Degree of 
adequate 
execution

Degree of 
adaptation to 
the 
environment

Degree of maintaining the 
performance under any 
circumstance

Degree of adequate 
communication to 
stakeholders

For data in 
development 
and operation

Evidence on 
how the results 
are produced

Of capabilities 
and limitations of 
the ML-based 
system

Of an operator in 
a timely manner 
to prevent 
hazards

Of a user in 
a timely 
manner to 
prevent 
hazards
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VERIFICATION AND VALIDATION

▪ Can be applied at component or system-level to check the desired properties, such as safety, liveness, 
reachability, robustness, stability, monotonicity, etc.

▪ Formal verification consists of methods in which the component and property are formalized in a 
mathematical model and state-of-the-art solvers and algorithms are used for checking the satisfaction 
(e.g. SMT or MILP solvers)

▪ Validation includes a plethora of techniques such as testing, simulation, or statistical analysis

▪ Several tools were explored
and analysed:

▪ Maturity issues

▪ Usability issues in terms 
Of applicability to other 
type of case studies 
(tailoring of interfaces, 
lack of updates to 
latest technologies)
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Tool Pros Cons Area of applicability

Formal verification

Marabou

Supports fully connected and convolutional 
DNNs 

Supports divide-and-conquer solving mode

Only supports piece-wise 
linear activation functions

Last tool update was in 2021

Neural Networks

Testing coverage

DeepGauge

Provides a comprehensive understanding of 
the internal neuron activation patterns. 

Provides a coverage criterion that is scalable, 
simple, and generalizable

Does not guarantee good 
results in general, excepts for 
adversarial test data for CNNs

Deep Neural Networks

Simulation-based testing

VIVAS

Can be applied to different domains and 
simulators. 

Uses formal methods for test scenario 
generation (counterexample generation, 
sampling)

Requires the specification of 
the system under study as 
symbolic model

ML-based systems

VerifAI

Provides several features (falsification, 
systematic testing, parameter synthesis, data 
set augmentation) based on formal methods

Limited to the automotive 
domain for simulations

ML-based systems for 
autonomous driving

Some examples of V&V tools
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SAFETY AND DEPENDABILITY ASSURANCE

▪ Safety and dependability of a system depends on the confidence of ML predictions:

▪ Such prediction could be inaccurate or wrong, which could lead to harmful consequences and failure 
propagation

▪ ML techniques are intrinsically subject to epistemic uncertainty (i.e., lack of training data) and aleatoric 
uncertainty (i.e., inherent stochasticity of observations), and often lack in explainability (i.e., why and how 
the prediction was made)

▪ Well-known techniques can be used to reduce the impact of such predictions on the overall system 
properties:

▪ Redundancy to increase the fault/failure tolerance through architectural elements

▪ FDIR to detect and isolate the faults early as possible in operation, and eventually apply reconfiguration

▪ Safety cages to detect and correct in operation wrongful inputs or outputs of the ML model (e.g., Tempest)

▪ Novel techniques can be used to quantify the uncertainty and explainability of ML predictions in development 
to ensure the overall system properties given the assumptions made:

▪ Uncertainty can be understood and assessed as random fluctuations part of the ML model (e.g., GluonTS), 
of the output (e.g., quantile loss) or of the ensembles of models (e.g., bagging, voting)

▪ Explainability can be assessed for a single prediction (local) or for each possible prediction (global) in oder
to gain confidence in the model correctness (e.g., Explainability Toolbox, GradCam)

Page 15



© GMV – Product Assurance for On-Board Learning-
Enabled Software – SWPA’23

REDUNDANCY AND CRITICALITY

▪ The criticality analysis and category assigned is well-defined in the ECSS standards and handbooks

▪ The use of ML techniques in the system is orthogonal to the criteria and analysis to be performed, without 
adding new constraints

▪ However, the criticality assigned demands different tailoring of the quality models (e.g., higher criticality 
shall imply possibly more characteristics with higher target values)

▪ The criticality level can be reduced by applying the ECSS standard and redundancy including compensating 
provisions 
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Independence Type Description
Initial 

Criticality
Compensating provision with SW 

redundancy for a ML SW critical component
Criticality after 
compensating

Functional 
Independence

Minimizes the likelihood of common 
sources of error associated with 
common requirement errors / 
common requirement interpretation 
errors.

A Traditional SW (criticality A) B

B
Redundant SW component with different 

implementation (criticality B)
C

C

Redundant ML SW component with different 
implementation (criticality C) D

Dissimilar 
Technology

Use of dissimilar technology to 
achieve a common goal, e.g.
hydraulic vs. electric

A Traditional SW (criticality A) B

B ML in a different learning technique (criticality B) C

C ML in a different learning technique (criticality C) D

Dissimilar 
implementation

Use of dissimilar operating systems, 
coding languages, component types, 
etc.

A Traditional SW (criticality A) B

B ML component with different model (criticality B) C

C ML component with different model (criticality C) D

Compensating procedures possible for the mitigation of common cause of errors



© GMV – Product Assurance for On-Board Learning-
Enabled Software – SWPA’23

CONCLUSION

▪ ECSS-based development lifecycle including dedicated data and model lifecycle with milestones and 
deliverables

▪ (Formal) Verification and Validation techniques to check the ML-based system (e.g., model, constituent, 
system) properties (functional, performance, scalability, generalization, reliability, resilience, safety, 
operational, etc.)

▪ Safety and dependability techniques to gain confidence in the ML model prediction and on-board correction 
in case of uncertainty or fault/failure detection

▪ Approach for criticality analysis and redundancy in system architecture for dependability

▪ ECSS-based quality model for data and software to ensure the product assurance of the ML-based system 
development process

▪ Ongoing definition of guidelines for the process application in practice and adaptation of standards
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Thank you!

Questions?

idragomir@gmv.com
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