
Using Rust for Mission Critical
Systems

Jonathan Pallant @ Ferrous Systems, September 2023

V5 2023-09-14

Introductions
• Jonathan Pallant (@thejpster)

• Embedded systems development for ~20 years

• Delphi, PHP, Perl, C, C++, C#, Bash, Ruby, Python, JavaScript, Rust

• Rust Embedded Working Group

• Rust Leadership Council

• Senior Engineer at Ferrous Systems

•

2

– https://ferrous-systems.com

“Ferrous Systems provides a one-stop-shop
service for businesses that want to harness

the power of Rust.”

https://ferrous-systems.com

Agenda

• Rust: An empathic systems programming language

• But what about when it’s Mission Critical?

• Case Study: Porting Rust to a new platform

• Questions?

Rust: An empathic systems
programming language

Rust’s Key Features

Batteries are Included

• You get a: Cross-compiler, Build System, Dependency Manager, Test
Runner, Code Formatter…

What makes it special?

• The Rust Compiler statically analyses the ownership of all of your
variables

• First-class slice types, iterators, and Unicode strings

• Compile-time code generation (e.g. printing structs to the console…)

• Static or Dynamic Dispatch with traits - your choice

• Performance on-par with C (and easier to multi-thread safely)

• A commitment to fix any unclear error messages

Rust has been successful at:

• Network Services

• Command-line tools

• Operating System Components and Drivers

• Bootloaders

• Embedded Systems

Embedded Systems?

• Rust is a cross-compiler that supports target binaries either:

• Running under an Operating System (Linux, macOS, Windows, etc)

• Running on bare-metal or an unsupported OS

• Tier 1: Macs, PCs, Arm64 Linux

• Tier 2: PowerPC, MIPS, RISC-V, other Arm systems, …

• Tier 3: Motorola 68000, Sony PSP, SPARC, QNX, VxWorks, …

What’s in the box?
• rustc - converts Rust source code to object code (.o)

• cargo - build system, package manager and test runner

• libcore, liballoc and libstd - the Rust standard libraries

• lld - the LLVM linker*

• rustdoc - makes HTML documentation

• rustfmt - formats Rust source code

• clippy - suggests improvements to your source code

• rust-analyser - an IDE plugin for auto-complete, rename, annotations…

• rustup - downloads new versions of all of the above

Who’s in charge?

• The Rust Project produces the toolchain

• Teams and Working Groups, led by the Leadership Council

• T-compiler, T-libs, T-lang, T-release, etc

• wg-embedded, wg-cli, wg-async, etc

Who’s in charge?

• The Rust Foundation supports The Rust Project

• Companies join as members

“Based on our studies, more than 2/3 of
respondents are confident in contributing to a

Rust codebase within two months or less
when learning Rust … Anecdotally, these
ramp-up numbers are in line with the time
we’ve seen for developers to adopt other

languages, both inside and outside of
Google.”

- https://opensource.googleblog.com/2023/06/rust-fact-vs-fiction-5-insights-from-googles-rust-
journey-2022.html

https://opensource.googleblog.com/2023/06/rust-fact-vs-fiction-5-insights-from-googles-rust-journey-2022.html
https://opensource.googleblog.com/2023/06/rust-fact-vs-fiction-5-insights-from-googles-rust-journey-2022.html

But what about when it’s
Mission Critical?

– https://ferrous-systems.com/ferrocene/

“Ferrocene will provide a qualified Rust
compiler tool chain. With this, Ferrous

Systems will make Rust a first-class language
for mission-critical and functional safety

systems.”

Ferrocene…

• sits downstream of The Rust Project

• is not a fork

• has sent all its bug-fixes upstream

• hosts some additional targets that upstream can’t host

• has a big announcement coming on 4 October

Confidence in your Tools

• What is the compiler supposed to do?

• Does it do what it is supposed to do?

• Does someone I trust believe it does what it is supposed to do?

• Can I get support and bug-fixes?

What is the compiler supposed to do?

• Rust doesn’t have a written specification (yet)

• So we wrote the Ferrocene Language Specification:

• https://spec.ferrocene.dev/

https://spec.ferrocene.dev/

Does it do what it is supposed to do?

• Rust already had an excellent compiler test suite!

• Our work was mainly joining the dots between the tests and the
specification, and automating everything (even the doc signing)

• Nothing hits our main branch unless all the tests pass

• We then documented everything in our new Safety Manual

Does someone I trust believe it does what
it is supposed to do?

• We sent all our documents to TÜV SÜD for ISO 26262 approvals

• You might have your own approvals body…

DRAFT
– TÜV Süd

“Ferrocene has been qualified to be used in
safety-related software development

according to ISO 26262”

Can I get support and bug-fixes?
• Ferrocene offers long-term support

Case Study: Porting Rust to a
new platform

Case Study: Porting Rust to a new platform

• Rust works great with ARM Cortex-M

• Lots of tools, libraries, sample projects

• But that’s a boring demo

• Rust uses LLVM to generate machine code

• LLVM supports: Arm, Intel, PowerPC, MIPS … and SPARC?

• But Rust only supported SPARC64 on Linux…

A bit more detail on Rust…

• Rust has targets - which describe the linker and CPU architecture to use:

• Some targets are built-in

• But new targets can be loaded at compile time

• Rust has both libstd, which needs an OS, and the smaller libcore, which
does not

Teaching Rust bare-metal SPARC

Can we make this target a built-in?

Yes we can. Upstreaming complete!
https://github.com/rust-lang/rust/pull/113535

https://github.com/rust-lang/rust/pull/113535

Bare-metal SPARC for everyone

cargo --target sparc-unknown-none-elf now works on nightly.

See https://doc.rust-lang.org/nightly/rustc/platform-support.html

(It also works on the GR765 LEON 5 prototype, and in RTEMS)

If you want it in Ferrocene, let’s talk!

https://doc.rust-lang.org/nightly/rustc/platform-support.html

Any Questions?

(https://github.com/ferrous-systems/sparc-experiments/)

https://github.com/ferrous-systems/sparc-experiments/

Dead Code and Coverage

• Dead Code within a crate is a warning (can be an error)

• Dead Code in a binary (i.e. pub export from a library but unused) is
removed by the LLVM optimiser (and we can do LTO)

• cargo-tarpaulin can do code coverage

• Uses LLVM tooling

• MC/DC is work in progress

Training and Support

• Ferrocene from Ferrous Systems

• GNAT Pro for Rust from AdaCore

• Several other training providers and consultancies around

• Many excellent on-line training courses too

Is there a MISRA for Rust?

• You’d have to ask MISRA (but I don’t think so)

• The language defaults are so good, most people don’t need to tie it down
any further

• But if you do, we have #[deny(rule)] (+ allow, warn, and forbid) with a
large number of built-in rules … e.g. #[forbid(unsafe-code)]

• https://doc.rust-lang.org/rustc/lints/index.html

https://doc.rust-lang.org/rustc/lints/index.html

Testing

• Unit Tests are compiled into your crate (can see private API)

• Integration Tests are compiled outside your crate (can only see public API)

• Documentation Tests compile and run the ``` code blocks in your doc
comments

• Ferrous System has a tool for running tests on bare-metal targets

C and C++

• Rust can call C compatible functions (we saw this in the demo)

• Rust can generate C compatible functions

• Tools are available to auto-generate matching pairs of C++/Rust objects,
and the appropriate, safe, C compatible conversion code for each side
(https://crates.io/crates/cxx)

https://crates.io/crates/cxx

RTOS Support

• RTIC - a real-time framework written in Rust with guaranteed WCET

• FreeRTOS - bindings available (e.g. Espressif IDF)

• LynxOS-178 - we wrote the bindings for Lynx

• QNX and VxWorks - supported upstream

• RTEMS - I wrote a C binary with RCC and linked a Rust example to it

