
Ensuring Compliance to
MISRA C and C++ coding
standards
Software Product Assurance Workshop, September 2023

Richard Corden, Perforce Software Inc.

2 4 September 2023

Agenda

Introduction to MISRA

Guideline Structure

Decidability

MISRA Compliance

Future Plans

Introduction to MISRA

Objectives and Structure

4 4 September 2023

Objectives and Structure

Goal: “To provide world-leading, best practice guidelines for the safe and
secure application of both embedded control systems and stand-alone
software.”

Work is overseen by “The MISRA Consortium Limited” (TMCL)

Projects are delivered by Working Groups, for example:

- Autocode

- Safety Case

- C

- C++

- Code Metrics

5 4 September 2023

Working Groups

Working Group Members formed of Domain Experts

Members of MISRA C and C++ are:

- Embedded Engineers

- Language Experts

- Tool Vendors

Working Groups meet regularly

Feedback on live documents available through the MISRA public forum

New Guidelines proposed by working group members and other sources

- AUTOSAR provided input for Guidelines in the upcoming MISRA C++ release

Guideline Structure

What makes a MISRA C/C++ Guideline?

7 4 September 2023

What is a MISRA C/C++ Guideline?

Not included in MISRA C / C++ Guidelines are:

- Guidelines relating to Style

- Metrics – a separate workgroup is investigating this

Guidelines ‘subset’ the language, but not language features, for example:

- Use `std::stoi` in preference to `atoi`

MISRA Guidelines are the minimal set – additional domain specific guidelines can be
added!

8 4 September 2023

What is a MISRA C/C++ Guideline?

MISRA C / C++ Guidelines should:

- Be more than just “don’t make this specific mistake”

- Be clear and unambiguous

- Be enforceable

- Be defensible

- Not curtail safe use of valid language features

Code that is compliant to the Guideline should avoid the “mistake” from taking place

Creating such Guidelines takes time

Decidability

Scope and Decidability

10 4 September 2023

Scope and Decidability

A guideline is decidable if it can be reliably determined that code is compliant

A C language guideline “do not modify a string literal” is not decidable

- non-const pointer can point to string literal

- Tracking a modification is not decidable

void foo (char * buffer) {
 char * chksum = “deadbeef”;
 strcpy (chksum, buffer);
}

11 4 September 2023

Scope and Decidability

Decidable Equivalent?

- “Do not Assign a string literal to a pointer to non-const”

The C and C++ languages allow casts to remove const

Requires compliance to additional Guideline: “Do not remove const”

The ideal is to have Decidable guidelines, and where appropriate, “Translation Unit
Scope” vs “System”.

From C++ ‘11, conversions from string literal to char * were deprecated meaning that
this guideline is not required for C++.

void foo (char * buffer) {
 char * chksum = “deadbeef”; /* Non-Compliant */
 strcpy (chksum, buffer);
}

12 4 September 2023

Dealing with Decidability

Undecidable guidelines can suffer from False Positives and Negatives

False Positives, while potentially annoying, provide a hook for developer action

False Negatives are more serious, possible mitigations:

- Manual code review

- Use of multiple analysis tools

Record in “Risk Register” what steps have been taken to mitigate the chance of False
Negatives

MISRA Compliance

Achieving MISRA Compliance

14 4 September 2023

What is compliance?

It is a statement claiming that the code within a project complies with the
restrictions and controls imposed by a MISRA subset (e.g. MISRA C:2023)

A statement of compliance is a form of self-declaration

- The organization producing the code is responsible for ensuring that it is
compliant

- Evidence needs to be produced to support a claim of compliance

See https://misra.org.uk/app/uploads/2021/06/MISRA-Compliance-2020.pdf

15 4 September 2023

Handling a Non-compliance

Projects dealing with hardware often cannot be 100% compliant to every
guideline

- it is common for integer constant expressions to be converted to pointers
to structures when accessing registers

MISRA accepts this reality

Deviations are use to handle a non-compliance that is unavoidable.

MISRA Compliance should be considered as early as possible

- Retrospective code modifications could introduce defects​!

16 4 September 2023

Does “compliant” mean “high quality”?

That depends…

u8 u8a;
s8 s8a;
u16 u16a;

u32a = s8a * u8a; // Non-compliant

Would a deviation be acceptable here or should the code be written in a
compliant manner?

- Both options make the code compliant, but the first would be unlikely to be
consistent with high quality

Deviations must take interaction between guidelines into account

17 4 September 2023

When is a violation a “valid” deviation?

The violation must be justifiable on strong technical grounds

- Never just for developer convenience!

The use of deviations must be controlled through a formal deviation process

- Deviations are requested by a developer

- Approved by a manager

- Signed-off (risk accepted) by a suitable technical authority

It is never acceptable for code to be “made compliant” by using a deviation to
cover a violation which could reasonably have been avoided

18 4 September 2023

Justifying a Deviation – “Reasons”

Any deviation should be attributable to one or more of the following reasons:

- Performance

- Alternative build configurations

- Access to hardware

- Defensive coding

- Code quality

- Adopted code integration

- Non-compliant adopted code

19 4 September 2023

Guideline re-categorization

MISRA allocates a category to each guideline

- “Mandatory” – violations are never permitted

- “Required” – violations are permitted when supported by a deviation

- “Advisory” – violations should be avoided where practicable, but a formal
deviation may not be required where violations exist

The categories within the MISRA documents define the minimum enforcement
level to be used for the guidelines

- It is likely that a project will be able to raise the enforcement level for many
“Required” guidelines to “Mandatory” (use of goto)

- A project may also decide to raise “Advisory” guidelines to “Required” (or
even “Mandatory”)

- Advisory guidelines may be lowered to dis-applied (use of C++ comments
in a C project)

20 4 September 2023

Guideline Compliance Summary

Minimum requirement to show project Compliance

List of every Guideline, the category and its Compliance Level:
- Compliant – no violations anywhere in the code

- Deviations – violations exist, however, they are justified and formally
accepted

- Violations – violations of advisory guidelines that do not require formal
justification

- Disapplied – no checks have been made for compliance

See MISRA Compliance 2020 for full details

Future Plans

22 4 September 2023

Future Plans

MISRA C has just published MISRA C:2023 with support for C18, including
coverage of new C features such as generic selections.​

MISRA C++ ​will shortly publish a new release of MISRA C++, which provides
guidance for the use of C++ 17.
- Compiler support for C++'17 features is widespread and mature

- As usage experience develops, more recent features will be included

- Goal is to provide more regular MISRA C++ releases

The MISRA Consortium is open to addressing languages other than C/C++ -
are you interested in setting up a group and putting the work in?

23 4 September 2023

Contact Details

https://misra.org.uk/

enquiries@misra.org.uk

Richard Corden

www.perforce.com

rcorden@perforce.com

https://misra.org.uk/

	Ensuring Compliance to MISRA C and C++ coding standards Softw
	Agenda
	Introduction to MISRA
	Objectives and Structure
	Working Groups
	Guideline Structure
	What is a MISRA C/C++ Guideline?
	What is a MISRA C/C++ Guideline? (2)
	Decidability
	Scope and Decidability
	Scope and Decidability (2)
	Dealing with Decidability
	MISRA Compliance
	What is compliance?
	Handling a Non-compliance
	Does “compliant” mean “high quality”?
	When is a violation a “valid” deviation?
	Justifying a Deviation – “Reasons”
	Guideline re-categorization
	Guideline Compliance Summary
	Future Plans
	Future Plans (2)
	Contact Details

