
BASED ON: TM-2234-OHBG_02

ANDREAS WORTMANN, 25-28.09.2023

WHY DO WE HAVE TO PREPARE A

SOFTWARE SCHEDULABILITY ANALYSIS?

SOFTWARE PRODUCT ASSURANCE WORKSHOP 2023, ESAC, SPAIN

SCHEDULABILITY ANALYSIS // A.WORTMANN // 25-28.09.2023 // SOFTWARE PA WORKSHOP, ESAC // PUBLIC 1

AGENDA
WHY DO WE HAVE TO PREPARE A SOFTWARE SCHEDULABILITY ANALYSIS?

SCHEDULABILITY ANALYSIS // A.WORTMANN // 25-28.09.2023 // SOFTWARE PA WORKSHOP, ESAC // PUBLIC 2

▪ INTRODUCTION

− What is a Schedulability Analysis?

▪ QUICK OVERVIEW

− Preconditions: Requirements, Software Architecture

− The Analyses: Essential Steps, Methods, Tools

▪ THEORY AND PRACTICE

− Lessons Learned

− Technical and Process specific Considerations

▪ BENEFITS

− Proof of timing constraints and requirements

− Incidental Catch

WHAT IS A SCHEDULABILITY ANALYSIS?
INTRODUCTION

3

▪ Focus on Onboard Flight Software (FSW, OBSW, SCSW, ICSW …)

− Software subsystems and central software item that glues together subsystems (hardware and software)

− Control loops, including Attitude and Orbit Control Thermal Control

− Telecommand and Telemetry Interfaces: Full commandability and visibility

− Robustness and Reliability: FDIR and redundancy

− Payload operation (very specific needs)

▪ Real-time needs & Timing requirements

− Hardware access

− Control algorithms

▪ Schedulability Analysis focuses on the (non-functional) timing aspects of the software (or entire systems)

− increase confidence in correct timing

− formally proof certain aspects correct under all circumstances

− SA is required for flight software qualification by the [ECSS-E-40-1]

SCHEDULABILITY ANALYSIS // A.WORTMANN // 25-28.09.2023 // SOFTWARE PA WORKSHOP, ESAC // PUBLIC

WHAT IS A SCHEDULABILITY ANALYSIS?
INTRODUCTION

4

▪ Hard deadline violation: loss of system integrity

− “The s/w shall retrieve a data packet from the input buffer within 100ms after reception.”

− “The AOCS loop including the data acquisition and equipment commanding shall be executed at a period of 1Hz”

→ crucial deadline, a violation might have serious impact

− Loss of data or invalid calculation results

− In general these requirements are also tight
(small timing window for execution)

▪ Soft deadline violation: loss of performance but does not harm the system stability and safety

− “The Telecommand TC(154,3) shall switch on the gyro within 10 seconds.
Note: An additional delay of up to 5 seconds is tolerated.”

→ soft deadline can be missed without seriously compromising the system

− some minor things might be effected
(user interaction slow, limited data rate …)

− In general these requirements are also relaxed
(large timing window for execution)

SCHEDULABILITY ANALYSIS // A.WORTMANN // 25-28.09.2023 // SOFTWARE PA WORKSHOP, ESAC // PUBLIC

PRECONDITION: REQUIREMENTS
QUICK OVERVIEW

5

Precondition: Timing Requirements must be identified and characterized !

Timing requirements are extracted from Device manuals, user expectation, engaged algorithms

Decomposition of System according to temporal needs

▪ Periodic

▪ Aperiodic

▪ Hard

▪ Soft

Selected Software Architecture needs to support these needs.

Use the appropriate Real-time Software Architecture to realize the temporal needs.

Combination of different architectures is feasible and common.

SCHEDULABILITY ANALYSIS // A.WORTMANN // 25-28.09.2023 // SOFTWARE PA WORKSHOP, ESAC // PUBLIC

Temporal Characteristics

Aperiodic Periodic

Hard

TM transmission
TC reception
Memory handling (e.g. EEPROM)
UART handling

TM HK acquisition
Monitoring of HK data
AOC execution and related s/s commanding
Thermal loop
Physical interface handling

(MIL-STD-1553B, CAN, SpaceWire, SpaceFiber)

Soft

TM generation
TC execution
Maintenance functionality

TM HK packet generation
Monitoring of HK data

PRECONDITION: SOFTWARE ARCHITECTURE
QUICK OVERVIEW

6

Precondition: Software Architecture must be analyzable !

SCHEDULABILITY ANALYSIS // A.WORTMANN // 25-28.09.2023 // SOFTWARE PA WORKSHOP, ESAC // PUBLIC

Event Dispatcher

Event Queue

(FIFO)

Idle Processing

(suspend until Event

Queue is not empty)

...

Service X

Service Y

... Controller Z
event

event

External Event

(ISR, other Task)

Fixed Time Slice Preemptive Multitasking
(Real-time Operating System)

Event-Driven Cooperative Scheduling
(Asynchronous Message Passing, XF)

Inflexible, hard to maintain,
lack of compositionality,
used in hypervisors etc.

Flexible set of independent tasks,
scheduling policy, preemption, blocking,
shared resource with arbitration protocol
used for hard (+soft) real-time

Flexible composition of independent
loosely coupled components, single task
run-to-completion, cooperative sched.,
used for soft real-time

ESSENTIAL STEPS
QUICK OVERVIEW

7

Analysis comprises 2 independent parts

▪ Formally proof all hard real-time constraints to hold under all (incl. worst case) conditions

− Established methodology for preemptive multitasking RTOS

− Mathematical model that allows formal reasoning for each timing constraint

− Response Time Analysis

R ≤ D task

▪ Argue all soft real-time constraints to be met

− Systematic Reasoning depends on the software architecture

− A formal proof aiming at a 100% confidence in general is infeasible as it is

− prohibitively expensive to carry out and

− very likely to require the entire system to be highly inefficient

− CPU Load Analysis based on measurements and statistics

− Long-term system observation and monitoring

SCHEDULABILITY ANALYSIS // A.WORTMANN // 25-28.09.2023 // SOFTWARE PA WORKSHOP, ESAC // PUBLIC

release
response time R

completion
deadline D

METHODS: RESPONSE TIME ANALYSIS
VERIFY HARD REAL-TIME CONSTRAINTS

SCHEDULABILITY ANALYSIS // A.WORTMANN // 25-28.09.2023 // SOFTWARE PA WORKSHOP, ESAC // PUBLIC SEITE 8

1) Timing analysis of code

• sequential code snippet

• Safe upper bound of WCET (Worst Case Execution Time)

• (Static) Code Analysis
→all execution paths & all system/memory/cache states

∀ⅈ ∈ 𝜏: 𝑅𝑖 ≤ 𝐷𝑖

Req. AOCS-210:
Execution of the AOCS step function and
its pre- and postprocessing shall be
completed within 200ms after the 1Hz
activation pulse.

2) Schedulability calculation

• Tasking Model (e.g. preemptive multitasking, RTOS)

• Mathematical Theory

• WCET serves as input data for calculating Response Time

3) Check with requirements

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

xxxxxxx xxxxxxx

TOOLS: RESPONSE TIME ANALYSIS
VERIFY HARD REAL-TIME CONSTRAINTS

9SCHEDULABILITY ANALYSIS // A.WORTMANN // 25-28.09.2023 // SOFTWARE PA WORKSHOP, ESAC // PUBLIC

Calculation, Visualization and DocumentationDetermined
WCET

Req. AOCS-210:
Execution of the AOCS step function and
its pre- and postprocessing shall be
completed within 200ms after the 1Hz
activation pulse.

Timing
Requirements

Response-Time Tools:
OHB Excel, DSL
MAST, Cheddar
… commercial …

Tasking Model

WCET - Tools:
AbsInt a³
Rapita Systems
Bound – T
…

THEORY AND PRACTICE
TECHNICAL CONSIDERATIONS

10

▪ Classification: which requirement is a soft and which is a hard timing constraint?

− For every hard timing constraint there must be a good and valid reason (not just a feeling and sense of urgency)

− Just because something is important to happen (cf. FDIR) it’s not necessarily to be classified “hard”

− If a function is determined to be subject to hard real-time but the envisaged implementation “breaks” the architecture, maybe the
implementation needs to be reconsidered.
(cf. “this TC is generated onboard as part of the control loop, so its execution needs to start and complete execution within 100ms”)

− Has impact on how to implement the respective functionality in order to be able to verify the requirements

▪ SA needs to be considered very early in the design and development process

− SA is tightly coupled with software architecture

− SA starts prior to the first line of code is written

− It is essential for all developers to understand the real-time behavior of the software

− Software modularity is not limited to function, but needs to consider timing and analyzability as well

SCHEDULABILITY ANALYSIS // A.WORTMANN // 25-28.09.2023 // SOFTWARE PA WORKSHOP, ESAC // PUBLIC

THEORY AND PRACTICE
PROCESS SPECIFIC CONSIDERATIONS

SCHEDULABILITY ANALYSIS // A.WORTMANN // 25-28.09.2023 // SOFTWARE PA WORKSHOP, ESAC // PUBLIC 11

Requirements

WCET Analysis
SA CalcDesign and

Implementation1

1

2

2

3 4

3

4

4

3

3

Measurements
5

5

2

V-Cycle

1

▪ Timing requirements are essential but often are missing or of insufficient quality

− But they are needed early to make the correct design decisions and to be able to verify/validate/test your system in the end

− Deficiencies are in requirement documents, user manual and ICDs (and in how they are processed)

− Timing requirements need to be as loose and relaxed as possible and not driven by a “feeling of urgency”

− All timing requirements must have a technical justification

▪ Some common design/implementation pattern are in conflict with assumptions or efficient application of the theory !

− Design for analyzability – know the assumptions and show that they are obeyed

− Great source for discussions !

− Ex.: misconceived software modularity vs. small set of tasks and shared resources

− Ex.: self-suspending functions in “user-friendly” API with hidden ISR vs. full knowledge of the software behavior

− Ex.: suspensions to implement temporal sequences, hardware access, API call vs. each task has a single point of suspension

− Ex.: Worst Case Time (WCET) vs. Average Time (AET) … selecting algorithms developers tend to go for the average execution time

− Advice: Keep it simple!
simple code is easy to be analyzed by static code analyzers (avoid dynamic structures and data dependent control flow)
and: less error-prone

THEORY AND PRACTICE
LESSONS LEARNED

12SCHEDULABILITY ANALYSIS // A.WORTMANN // 25-28.09.2023 // SOFTWARE PA WORKSHOP, ESAC // PUBLIC

But, we have always done
it like this!

BENEFITS
EXPECTATIONS: PROOF OF TIMING CONSTRAINTS AND REQUIREMENTS

13

▪ A Schedulability Analysis can proof certain timing properties, but

− The proof is carried out on a mathematical model

− It is assumed that the mathematical model resembles the implementation (but in general this can’t be shown)

▪ SA can not formally proof every timing requirement .. and this is not necessary

− “only” hard timing requirements are formally proven,

− Soft timing requirements are argued to be met based on measurements and estimates

▪ SA is only one brick contributing to System/Software correctness

− Ongoing monitoring (of the timing behavior) still is essential

− Comprehensive tests still are essential

SCHEDULABILITY ANALYSIS // A.WORTMANN // 25-28.09.2023 // SOFTWARE PA WORKSHOP, ESAC // PUBLIC

BENEFITS
INCIDENTAL CATCH

14

▪ Ideally timing analysis is performed by a different team / personnel

− Providing an extra pair of eye for thorough code review and understanding

▪ Orthogonal view into the software

− Usually the function is the primary focus of developer and reviewer, now the time perspective is added

▪ Early considerations wrt. a clean and structured architecture

− Shared resources and their accessors (+monitors, semaphores etc) are identified by analysis (must adhere the architecture, code review by analysis)

▪ Static code analysis identifies all feasible execution paths, even those not intended or tested

− Identify unintended and untested execution paths that may lead to unexpected behavior

▪ Static code analysis identifies the longest execution path

− Hot-spot identification early in the process → Optimization of algorithms, ensure scalability

− Ex.: a data-pool is populated with a limited set of data during development and test such that search inefficiencies are identified late

▪ Static stack analysis is a low-hanging fruit

− Worst case stack usage can be calculated by static timing analysis tools as it engages the same technology

▪ Keep it simple and stupid (KISS)

− Architecture designed for analysis typically is simple (repetitive design pattern)

− Simple code is easier to be analyzed by code analyzers (less manual annotations required)

− Simple code usually is less error-prone code, (Ex.: avoid dynamic structures and data dependent control flow)

SCHEDULABILITY ANALYSIS // A.WORTMANN // 25-28.09.2023 // SOFTWARE PA WORKSHOP, ESAC // PUBLIC

OUTLOOK
WHAT ABOUT OTHER ARCHITECTURES?

15

▪ More advanced processing architectures (Multi-Core processors, Hypervisors, Distributed systems)

− Proofing timing/access constraints across multiple processors yields explosion in complexity

So we’d better avoid that …

− … and follow the often suggested approach of separating hard real-time sensitive functionality into dedicated Cores or CPUs

− Ex.: in SMP RTOS dedicated tasks are bound to specific CPU cores (BMP – bound multi-processing), which are analyzable independently

▪ Realtime bus systems (MIL-STD-1553B, CAN, TTEthernet, SpaceWire, SpaceFibre, RS485 …)

− Usually restriction to a real-time capable protocol subset: periodic queries “send-list” approach

− Often the scheduling theory is applicable similarly

− Ex.: real-time communication via multi-master CAN with proven upper bound for the Response/Transmission Time

SCHEDULABILITY ANALYSIS // A.WORTMANN // 25-28.09.2023 // SOFTWARE PA WORKSHOP, ESAC // PUBLIC

SUMMARY
INTRODUCTION & QUICK OVERVIEW

16

▪ SA is only one brick contributing to System/Software correctness

− Ongoing monitoring (of the timing behavior) still is essential

− Comprehensive tests still are essential

▪ SA argues about timing and

− can formally proof “only” hard timing requirements and

− may provide systematic means to argue that soft timing requirements are met

▪ SA ranges the entire lifecycle and is specifically important in early phases (requirements, architecture definition ..)

▪ SA provides incidental benefits

− insight in the software from a different (non-functional) perspective

− additional confidence that the software/system works as expected

SCHEDULABILITY ANALYSIS // A.WORTMANN // 25-28.09.2023 // SOFTWARE PA WORKSHOP, ESAC // PUBLIC

THANK YOU!

17

OHB SE
Manfred-Fuchs-Platz 2-4
28359 Bremen
Germany

Phone: +49 421 2020 8
Fax: +49 421 2020 700
Email: info@ohb.de
Web: www.ohb.de

SCHEDULABILITY ANALYSIS // A.WORTMANN // 25-28.09.2023 // SOFTWARE PA WORKSHOP, ESAC // PUBLIC

ANDREAS WORTMANN, SOFTWARE PRODUCT ASSURANCE WORKSHOP 2023, ESAC, SPAIN, 25-28.09.2023

WHY DO WE HAVE TO PREPARE A

SOFTWARE SCHEDULABILITY ANALYSIS?

	Folie 1: Why do we have to prepare a Software Schedulability Analysis?
	Folie 2: Agenda
	Folie 3: What is a Schedulability Analysis?
	Folie 4: What is a Schedulability Analysis?
	Folie 5: Precondition: Requirements
	Folie 6: Precondition: Software Architecture
	Folie 7: Essential Steps
	Folie 8: Methods: Response Time Analysis
	Folie 9: Tools: Response Time Analysis
	Folie 10: Theory and Practice
	Folie 11: Theory and Practice
	Folie 12: Theory and Practice
	Folie 13: Benefits
	Folie 14: Benefits
	Folie 15: Outlook
	Folie 16: Summary
	Folie 17

