Application of Requirements Analysis Methodology
and Automatic Code Generation
Using SysML and L&L with Assurance

Japan Aerospace Exploration Agency (JAXA)
Safety and Mission Assurance Department
Michihide NITTA, Hiroki UMEDA, Masafumi KATAHIRA

15 September 2023 software product assurance workshop 2023

15 September 2023

Outline

B This talk covers the following ;

1 Requirement analysis using MBSE method focusing on

constraints to prevent missing requirements

2 Introduction of JAXA’s Automatic Code Generation

software product assurance workshop 2023

1. REQUIREMENT ANALYSIS USING MBSE METHOD
FOCUSING ON CONSTRAINTS TO PREVENT
MISSING REQUIREMENTS

15 September 2023 software product assurance workshop 2023

M Identification of issues (1)

Explore to Realize

Approximately 40% of on-orbit spacecraft failures are functional design-related failures, which are systematic

failures caused by overlooking constraints.

JAXA's Spacecraft orbital failures from 2000 to 2019 (371 cases in total)

. Unknown, 7%
Degradation \

without failure, 0% \

Transient failure,
14%

Human error, 7% —

Systematic failure,
41%

15 September 2023

Random hardware
failure, 22%

. Hardware oriented
failure, 31%

Hardware design
——— and manufacturing
failure, 9%

<Failure Inclusion Factors / Failure Remaining
Factors>
(1) Design input error
(Example: Interpretation of calculation
formulas between manufacturers)
(2) Design error
(Example: contradiction between constraints
implicitly placed in various parts of the system)
(3) Omission of verification
(Example: Unverified because the constraints
were not clear)

software product assurance workshop 2023

M Identification of issues (2)

Explore to Realize

Software testing fails due to “blind spots by spatial and temporal distribution®.

Failure factors after
software testing

@: Spatial

information

distribution of

@ : Temporal

information

distribution of

Classification of causes

C Missing constraint of

~

relationships between upper and
(lower architectures
C Large number of transmissions

and missing of input/output
relationships and processing at
Qhe same level

J
~

J

Missing due to differences in

ktemporal/sequential information
~
M Time reference point missing

\due to differences

I Multiple internal elements
@) : No distribution
A single internal element

15 September 2023

software product assurance workshop 2023

Examples of failure factors

*Software does not take hardware constraints into account.
*Component constraints are not taken into account during

operation.

* Leakage of input-output relationships that depend on

components.
(It is necessary to consider elements with indirect input-
output relationships.)

*If counterpart does not consider the constraints of the

relevant element.
(In a certain state, the operation is not accepted.)

*The sequence between components and the state

transitions of the components are not consistent.

N
*Caused by the difference between starting and internal

time

*Caused by periodic processing and interrupted processing

*Too many elements or parallel actions

*Detectable only by direct input/output relationship

*Occurs only on single internal elements

M Identification of issues (3)

Explore to Realize

To prevent overlooking due to temporal and spatial dispersion, it is necessary to guide viewpoints

when using MBSE modeling and models that address the issues

® Example of missing constraint of
relationships between upper and
lower architectures

» << System level >>

Switching operation of primary and

secondary systems.

» << Component level >>
Constraints on the system switching
conditions were leaked, because the
switching function at the time of
switching differs for each component.

MBSE System models
Behavior Structure Parameter
Operational
System - Phase | System | Ext. System ESxternaI ot
peration [[Action Action ystem expression
mode 1 | |__>| | System
i Ext I . System
heagon | Action |4—| Action | Er)m(vﬁggr?qentJ Attribute ConSt%/
express
~
Component , /
|Function A | |Function B | l Function A
(Software) Constrai
External S expreE<sion
:\ Initial process$ing Function - -
R Function A—{Function B/
Situation- >Constraint|,__[Constzatt|
dependent | | External J A CW Function B
message Attribute Constraint
p %~ Elem?nt S expression
interface \
constraints \
Com ponent| [state transition of component X l
H d Component input Eompor)entx
ardware Inpu E I onstraint
() Cé?‘ﬁ{)%%ent . expression —
Xomponent_,\c(omponent
J > E)(znstramt <_E$nstra|nt -
i . Component Y
External component input Ei(t%rngl Attribute Constraint
ement !
\ T expression

® Example of time reference point
missing due to differences

» << Function level >>

The conditions for sending and

receiving commands (reference time

criteria) differ depending on the

purpose and status of the function.

» << Hardware level >>

There are constraints on the cycle and
update frequency of commands to be
read depending on the component.

15 September 2023

software product assurance workshop 2023

1.1 System functional design based on operational scenarios
using constraint relations

Explore to Realize

B Systematizing architectural longitudinal constraints and evaluating system functional design

the process of the method
Stepl

Stakeholders Analysis

Step2

Definition of external
Systems and external
environment

Step3

Operational scenario
generation

Step4

v

Implementation of
functional design

15 September 2023

the perspective of its analysis

Definition the expectation
state from Stakeholders

(Operational Fhase
(operational scene)

]External environment \

Definition of Hazard
Condition

'

Decision
system CS1

1
Physical
L system PS1
.

|

2

(Physical state of the) (Decision)

Identification of external
systems for each phase of
operation

system PS1 state of the

system CS1
Expectatlon

Extraction of physical
actions with external
environment and systems

Analysis of the order of
interaction between each
system

System state detailing
(expectation, exception,
non-safety, etc.)

Functional input/output
conditions by refinement

Functional input-output
conditions from system
constraint expressions

soTtware pro

Exceptlon
state
Non-safety . Safety
state state j

System function design results

Analysis Framework Overview (Output images)

Operational scenario

Steady state for each
operatlonal scene

Operatlonal event 1
Physical phenomenon

State A of State B of
Physical

Physical
system PSl

system PSZ

DeC|5|on System CS1

(Operatlonal event 2

End state
(expectation/safe/non-safe)

@ Generation

means of
implementation

Function
Dest.

Execution
process

Execution
condition

achievement level |non-functional

properties

Constraint relational expressions (CRD)

ﬁ Review

Objective Iayer Constraint expression

Requirements for the system,I Design constraints

Common constraint

System layer

1
[Constraint expression |—{expression

[
[Constraint claxpression |

* Omitted

[
Component layer [Constraint expression |

]
[Constraint expression

uct assurance workshop 2023

1.1 System functional design based on operational scenarios
using constraint relations

Explore to Realize

® Description rule for CRD (1/2)

System Architectural Design

System Models (SysML)

layerf Requirement| Behavior Structure
1 Satisfaction —_——
External I
User |
- System,
requirement Use Case |
I External
Ru . |
I enviroment
Decomppsition
2 Satisfdction
r sy System Svstem ===
I function yste IComponents]
. < function
Irequirementl™ 1 | E I
Allocttion gi(1nformatio
Cse(Energy confjstraint)
3 ~ — — satisfqction
Compo.nent L Function Component
I function '« £ o
I_requirement
-=== Ca{Information

15 September 2023

Achieve User requirement R,
Define use case U(F1, F2,,,).

Method for
Deriving
Constraints

CRD (Constraint relational expressions)

Objective layer

System layer

Constraint expression

Requirements for the system, Design constraints

l—l_l

Common constraint

‘Constraim expression ‘ ‘Constraint expression ’—

expression

* Omitted

Componet layer ‘Constraint expression ‘ ‘Constraint expression }—‘

—_

Define System Objective

Allocate Function F in Use
Case U to a component,
refine Def(F)={f1,f2,,,}

»{expression M that satisfies
L user requirements Ru

-

Assign the refined Function f
to the component
E={el,e2,,}.

amount constraint)

hmount constraint#y)

_

Divide Use Case U by
location or time and
define Energy constraint
Cp and Information
amount constraint Cq

~

J

A

7

Cce(Energy constraint)

Define function f
(precondition pre,
postcondition pst).

software product assurance

.

Define constraints Cr and
Cs for the component.

~\

J

—

Using Cp, Cq, Cr, Cs, review
functional requirements Rf
and check for missed items
in precondition pre and
postcondition pst

~

User
requirement
Ru

Use Case

Def(U)

System
Objective
Formula M

(5

Energy constraint Cp(i)
/Information amount

constraint Cq(j)

I
Decompose
by means of
realization
|

Decompose
by location
or time

Correspondence
between
functions and

components
Allocate (e,f)

/|

Constraints by
means of
realization

components Cr, Cs

J

[nthe case of a
system architecture
with few
component options
as a means of
implementation.

Inthe case of a
system architecture
with many
component options
as a means of
implementation.

1.1 System functional design based on operational scenarios

using constraint relations

® Description rule for CRD (2/2)

The purpose of the system is to safely

System Objective —

reach a certain location and observe a

Layer O ((Missions, Ensuring safety)
Spatial constraints (location constraints from the objective)
Objective O -"‘g/
Layer 1 of System A [ystem B
System
System . .
Layer 2 constraint Ci bf/()i:?;rr%r;tt% 0
by energy Ei quantity Qj
|
Constraint Cn Constraint Cn+1
Layer 3 by means of by means of
realization Mn | |realization Mn+1]

certain point.

Temporal constraints (time constraints for sending/receiving information)

B Point of Method

On the axis of time and space, clarify the relationship of
constraints for each operational phase/phase set from the
constraints of the means of realization, and check for
missing conditions for function execution.

Constraint priority 1: power /

Constraint priority 2: momentum
Constraint priority 3: Communication volume

15 September 2023

Constraints on realization means (componen
* Constraints due to operating enviro
* Constraints by range of moti
* Constraints by processiaig speed and capacity

* Constraints by power, heat, and weight
software product assurance workshop 2023

B System features

The actions performed by the system such as
observation, communication, charging, and heat
dissipation are determined by the location of the
system, each of which has a time constraint.

By determining each constraint and its
distribution, the component selection criteria are
clarified.

B Target applying the method

The execution conditions of the function are

overlooked when designing the function of the

component.

why?

* For the constraints, which are the means of
implementation, related constraints exist in
two layers, but the effect is not considered.

1.2 Software state transition analysis

Explore to Realize

The operation mode includes an artificially set mode such as an operation plan, and a physically set
mode such as the operating state of the actuator.

the process of the method

Analysis of system
operational scene

Analysis of system-
to-system interfaces

y

Derivation of

analysis conditions
from constraints

A
Generating
Validation

Analysis Framework Overview (Output images)

the perspective of its analysis

Mission Hazard

Actuator

senser

Changing point in the
external environment

switching point

Autonomous control |Occurrence Switching
probable location

Changing point |Constraint [Changing point

System internal change point
Operation change point
Measurement change point

Analysis of control structures
between controllers

, . Operationa
scenel

Logical architecture trade-offs

%
%

Control structure for each
Analysis of inter-controller phase

operational

System
Controller SC

operation sequence

LT VT

Derivation of analVSiS_‘ Controller C1 < Controller C2
conditions from constraints y It
— - Contro "Control
Derivation of analysis Target Target

conditions from operational

constraints

Set parameter values from

Nominal/off-nominal case

Analysis Cases

15 September 2023

analysis items and analysis Element |Parameter

Analysis case

conditions Value

software product assurance workshop 2023

Operational scenes where controller roles
and control methods may change

Operationa

Operationa
scene2 scene3

Select critical and complex scenes

Interaction between controllers

SC C1 C2

—
|
Defect

occurrence
condition

v v v

Condition combination (+ analysis viewpoint)

Analysis script
E> (Matlab/Simulink)

10

1.2 Software state transition analysis %%4

Define the description rules in the SysML sequence diagram according to the characteristics of the system.

Description rule Description
5| Object of
"< 100ps Controller control
‘ Sequence ’ -Range of time constraints (Actuator)
r———=—=|——=—=—"=="="—=~=—===—=--- I
I
-Sensor measurement and I S | .
‘ 1 message ’ periodic processing 1 Loop 1 gpepgii?]n:jtilr?]\ger limits of
- Controller's judgment I «! P gl

*Actuator operation status | I

N 3 Extended
: SysML

Multiple -Events and order of operation | o e _______
messages *Time constraints between events :_ I
I
| |
1 Loop 2 I
' I
*Hazard Causes Actuator I I
Component | .controllers that prevent hazards e e e 4

15 September 2023 software product assurance workshop 2023 11

1.2 Software state transition analysis

Explore to Realize

Description rule

‘Sequence ’

‘ 1 message ’

Multiple
messages

‘ Component ’

15 September 2023

2 loops
*Range of time constraints

*Sensor measurement and
periodic processing
*Controller's judgment

* Actuator operation status

*Events and order of operation
*Time constraints between events

*Hazard Causes Actuator
= Controllers that prevent hazards

Description

Controller

(Actuator)

Object of control

Direct measurement
sensor (Periodic)

software product assurance workshop 2023

Indirect
measurement
sensor
(Periodic)

Judgment

Operation status

.
(If there is another
actuator) Physical action

12

1.2 Software state transition analysis

Explore to Realize

Description rule Description
2 loops Object of control
‘ Sequence ’ -Range of time constraints Controller (Actuator)
Initial status Initial status
*Sensor measurement and «]
‘ 1 message ’ periodic processing
*Controller's judgment
* Actuator operation status A Event 1
4—
Multiple - Events and order of operation Decide Upper limits of
messages *Time constraints between events in time operating time
< Event 2
Event 3
*Hazard Causes Actuator Extended «
Component |.
‘ P Controllers that prevent hazards SysML
v v

15 September 2023 software product assurance workshop 2023

1.2 Software state transition analysis

Explore to Realize

Description rule

Description

Higher controller

2 loops ; P :

‘ Sequence ’ -Range of time constraints Information Notice mstructlonv
Controller Instruction for
Instruction for physical action 2
physical action 1v v

*Sensor measurement and Object of control
‘ 1 message ’ periodic processing

*Controller's judgment

= Actuator operation status

Higher ' f
contgro?Ier Controller chojﬁ'f:oclJ
‘ Multiple ’ "Events and order of operation e .
*Time constraints between events nrormation
MESSages Notice Instruction for
instruction | physical
action 1 — 1 Changein
*Hazard Causes Actuator _ _ operation status 1
Component | .controllers that prevent hazards Instruction for physical |
action 2 — .
Change in
v v v _ loperation status 2
15 September 2023 software product assurance workshop 2023

14

1.2 Software state transition analysis

Explore to Realize

B Modeling rules set for verification purposes
In order to perform safe operation (actuator operation) after a certain time has elapsed since the event occurred,
* The conditions for starting and stopping the timer (including and/or) must be specified.

* The information about the timer must be specified in the message between each controller.
* The logic for safety such as "detection and judgment” shall be specified individually.

Example of Sequence Diagram

Time constraint
(Timer count range)

15 September 2023

Time constraint
(From event occurrence

External controller
(System)

Controller
(Primary)

Controller
(Secondary)

Actuator

to event end)

Controller notifies the

§ventoccurrence

Judgment of the

event occurrence
based on signals from
Primary/Secondary
Gontro ler

Start the timer

<
<

/

Controller acquires the ever

t occurrence signal.

Event occurrence

Respond to the event ocq

Determining whether

an event has occurred

Determining whether
an event has occurred

| Example of spatial/temporal distribution |

The conditions for generating the reference time are

from the starting point of the actuator's operation to
the controller, and the point of analysis at the time of
failure was clarified.

(omission)

Stop the timer

y <

A

4

software product assurance workshop 2023

v

:‘ Event end

v

15

2.

15 September 2023

INTRODUCTION OF JAXA'S AUTOMATIC CODE
GENERATION

software product assurance workshop 2023

16

2 Introduction of JAXA’s Automatic Code Generation

Explore to Realize

The software development standard for spacecraft, JERG-2-610, was revised in 2021.
The requirements shown in the table below are shared.

® Requirements for the automatic code generation (1/4)

Description related to automatic code generation of JERG-2-610B

Process Requirement
5.3.1 Process 5.3.1.1(2) Based on the development strategy, a software development plan including the following information shall be
implementation established to cover:

5.3.1.1(2)(f) Definition of activities in accordance with automatic code generation tools, scope (x¥3), verification policy (x4),
management policy, the tools to be used and selection criteria and rationale applied to the selection of the tools, and the
automatic code generation handbook when automatic code generation is implemented

5.3.1.1(2)(m) Environment to be used for the software development and verification (enabling systems or services such as
simulators, real hardware, test environment, source code analysis tools, and automatic code generation tools) shall be identified
and made available

*3: Functions and modules to which automatic code generation is applied.

x4: Verification policy defines source code review, verification methods (model based simulation and model unit testing) of
source data (e.g., models) for automatic code generation, unit testing, integration tests, equivalence evaluation of models and
code, and comprehensive verification strategy combining them.

5.3.4 Computer 5.3.4.1(9) Evaluation criteria for the computer system architectural design shall be defined, and the results of the computer
system system architectural design shall be evaluated in accordance with these criteria. Additionally, rationale for the selection of the
architectural computer system architectural design shall be recorded. When model based development is implemented, the validity of the
design design shall be evaluated by applying model based simulation with the level of the computer system architectural design
specifications.
5.3.5 Software 5.3.5.1(14) When automatic code generation is implemented, the interface between manually-developed source code and
requirements automatically-generated code shall be analyzed in accordance with the scope decided in the establishment of the (software
analysis devvelopment) plan.

5.3.5.1(19) When model based development is implemented, the validity of the requirements shall be evaluated by applying
model based simulation with the level of the software requirements specifications.

15 September 2023 software product assurance workshop 2023 17

2 Introduction of JAXA’s Automatic Code Generation

Explore to Realize

® Requirements for the automatic code generation (2/4)

Description related to automatic code generation of JERG-2-610B

Process

Requirement

5.3.6 Software
design

5.3.6.1

(1) Functional decomposition and module partitioning shall be performed based on the software requirements specifications
and module structures and the structures between the modules comprising the functions shall be clarified, so that an
appropriate software architectural design is performed. When automatic code generation is implemented, the scope of
automatic code generation decided in the establishment of the (software devvelopment) plan shall be established, and
interface specifications between manually-developed source code and automatically-generated code shall be established.

5.3.6.1

(8) When model based development is implemented, the validity of the design shall be evaluated by applying model based
simulation.

(11) When automatic code generation is implemented, source data (e.g., models) for automatic code generation shall be
developed in accordance with the automatic code generation handbook.

(16) When automatic code generation is implemented, model unit testing shall be performed so that the predetermined
evaluation criteria for model testing coverage are met.

Model unit testing :

When automatic code generation is implemented, a test equivalent to unit testing is performed by using source data (e.g.,
models) for automatic code generation in the software design process or other processes. The test specifications (test
cases) used in this testing are applied to the equivalence evaluation of unit testing in the software coding and testing
process with the same specifications.

Model testing coverage :

The degree of coverage for a model when automatic code generation is implemented and model unit testing is performed.
Criteria required for quality evaluation are required to be set in advance. A part of the evaluation criteria may be fulfilled by
implementing model based simulation.

15 September 2023

software product assurance workshop 2023 18

2 Introduction of JAXA’s Automatic Code Generation

Explore to Realize

® Requirements for the automatic code generation (3/4)

Description related to automatic code generation of JERG-2-610B

Process

Requirement

5.3.8 Software
coding and testing

5.3.8.1(2) Coding and unit testing

5.3.8.1(2)(b) When automatic code generation is implemented, the automatic code generation shall be performed in accordance
with the automatic code generation handbook.

5.3.8.1(2)(c) Source code shall be developed based on the defined coding standard. When automatic code generation is
implemented, it shall be developed in accordance with the automatic code generation handbook.

5.3.8.1(2)(d) The review of source code shall be performed according to the verification policy of the (software) development
plan.

5.3.8.1(2)(e) Unit testing specifications shall be developed in accordance with the software verification plan, the software test
plan and the acceptance criteria defined in (1) (a) above. When automatic code generation is implemented, unit testing
specifications including the test specifications (test cases) used for the model unit testing shall be developed.

5.3.8.1(2)(f) Unit testing shall be performed in accordance with the unit testing specifications, and the test results shall be
recorded in a format that it allows determination of pass or failure.

5.3.8.1(2)(9) For unit testing, the test shall be performed so that the criteria of the test coverage for source code are satisfied.
When automatic code generation is implemented, in addition, model unit testing is performed in the software design process
(refer to 5.3.6.1 (16)). Then, unit testing for automatically-generated code is performed in accordance with the test
specifications (test cases) used for the model unit testing, and the equivalence between source data (e.g., models) for
automatic code generation and the automatically-generated code shall be evaluated.

5.3.8.1(2)(h) Static analysis shall be performed with a code checking tool or equivalent and the source code quality shall be
evaluated. (Automatically-generated code is included.)

5.3.10 Software
integration

5.3.10.1(2) Implementation of Integration

5.3.10.1(2)(b) When automatic code generation is implemented, software generated from manually-developed source code and
one generated from automatically-generated code shall be integrated. Then, the applicability of the integrated one with the
interface specifications clarified in the design shall be checked.

15 September 2023

software product assurance workshop 2023 19

2 Introduction of JAXA’s Automatic Code Generation

Explore to Realize

® Requirements for the automatic code generation (4/4)

Description related to automatic code generation of JERG-2-610B

Process

Requirement

5.3.11 Software
integration test

5.3.11(1) Test preparation

5.3.11(1)(b) For software test, the following shall be considered:

5.3.11(1)(b) (vii) Equivalence between source data (e.g., models) for automatic code generation and automatically-generated
code when automatic code generation is implemented

5.3.11(1)(b) (viii) When automatic code generation is implemented, software generated from manually-developed source code
and that generated from automatically-generated code shall be integrated. Then, the validity of correct software behavior in an
environment equivalent to the real target shall be checked.

5.5 Maintenance
process

5.5.3 Modification implementation
If an automatically-generated code part is modified manually, the same activities as for manually-developed source code shall

be performed.

6.2 Configuration
management
process

6.2.2 Configuration identification

6.2.2(2) For configuration items, the following shall be identified:

(a) Version references (x1)

(b) Other identification details (x2)

*T: When model based development and automatic code generation are implemented, the version of each of the elements such
as models to be used, source data (e.g., models) for automatic code generation, tools, and simulators shall be included.

x2: The configuration management information of the following shall be able to be referred to: models, tools, simulators,
parameters, and other matters used in model based simulation and model unit testing, and source data (e.g., models) for
automatic code generation and tools for automatically-generated code.

15 September 2023

software product assurance workshop 2023 20

2 Introduction of JAXA’s Automatic Code Generation

Explore to Realize

® The software assurance requirements for for the automatic code generation (1/2)

Description related to automatic code generation of JERG-2-610B

Process

Requirement

6.3 Quality
assurance process

6.3.1.3 Establishment of a quality assurance activities plan

A quality assurance activity plan shall be established in accordance with the quality assurance strategy The quality assurance
activity plan shall include the following:

(10) Management in automatic code generation

6.3.7 Management in automatic code generation
When automatic code generation is implemented, situations of the implementation of the following management items shall be
evaluated:

(1) Selection of tools for automatic code generation

Criteria are defined in terms of the evaluation viewpoints below, and the results of the evaluation of these criteria are
documented when the tools required for automatic code generation, such as those for developing source data (e.g., models) for
automatic code generation; generating code automatically from source data (e.g., models) for automatic code generation;
collecting the metrics of source data (e.g., models) for automatic code generation, and managing the configuration of source
data (e.g., models) for automatic code generation and parameters used for these source data (e.g., models); and other
functions. The results can be replaced with the following perspectives based on the evaluation of achievements of other
products having equal quality requirements.

(a) Compliance with the identified automatic code generation handbook

(b) Measurement environment of model testing coverage in model unit testing

(c) Compatibility in cooperation with tools used in model based simulation and model unit testing

(d) Compatibility with other tools (e.g., compilers and code management systems) using automatically-generated code as one of
inputs

(e) Whether tools required for the project can be customized or not

(f) Configuration change control of tools including parameters

(9) Whether the quality assurance information of tools (e.g., versions and upgrading information) is available or not

(h) Performance of automatically-generated code (size and speed)

(2) Modification of automatically-generated code

(a) Automatically-generated code shall not be modified in the code itself but modified through the source data (e.g., models) for
automatic code generation.

(b) If automatically-generated code is modified manually from necessity, activities of the development and configuration
management processes, such as compliance with coding standards, the review of code, and unit testing, equivalent to those for
manually-developed source code shall be performed.

15 September 2023

software product assurance workshop 2023

21

2 Introduction of JAXA’s Automatic Code Generation

Explore to Realize

® The software assurance requirements for the automatic code generation (2/2)

Description related to automatic code generation of JERG-2-610B

Process

Requirement

6.4 Verification
process

6.4.2.3 Design verification
The following viewpoint shall be considered:

(6) When automatic code generation is implemented, model unit testing is performed.

6.4.2.4 Source code verification
The following viewpoint shall be considered:

(5) When automatic code generation is implemented, equivalence between source data (e.g., models) for automatic code
generation and automatically-generated code is evaluated.

15 September 2023

software product assurance workshop 2023

22

Conclusion

B MBSE method focusing on constraints
» Number of Demonstrated Projects
— 5 projects

» Applied subsystem
— Attitude and Orbit Control Subsystem

» Effectiveness and Outlook
— The above two Methods are moving to the stage of application to actual projects because
they are able to solve the issues through demonstration.

B Automatic Code Generation
» Number of projects applied
— 3 projects

» Applied subsystem
— Attitude and Orbit Control Subsystem

» Application Policy
— Apply to newly developed software

» Effectiveness and Outlook
— Since the software development standard were established two years ago, automatic code
generation has been completed. No particular issues have been found in this phase so far,
and the process is going well.

15 September 2023 software product assurance workshop 2023

23

15 September 2023

Thank you for listening!

Any questions & comments

software product assurance workshop 2023

24

Examples of Constraint relational expressions (CRD) according to
architectural characteristics

Explore to Realize

LEGENDS

Relational expression

Requirement for Architectural demands
* Divided into average and maximum during operation
Constraints arising from architectural design

Operating rate of on-board equipment of earth
observation satellites= Mission data acquisition period M
+ non-acquisition period N at the time of closest approach

*maximizing M

Design analysis for each
attitude mode
(earth-oriented, sun-oriented)

Mission data acquisition period M

1st layer

*meet user requirements

system layer 1

Mission data unobtainable period N= Power Constraint Pc + Attitude
Constraint Ac + Data Balance Constraint Dc

2nd layer

consumption)

Power constraint Pc = maximum charging period
(generated power + remaining battery power - power

system layer 2

*The battery must hold at least x % of power even
during the maximum non-charging period

Attitude constraint Ac = attitude mode change
time (attitude change time)

3rd layer

Generated power

power consumption

component layer

*Average poweMaximum
power

Attitude change time (maneuver performance)= =
Attitude changeable condition and Actuator operating
performance X Pointing accuracy (attitude stability)

Data balance constraint Dc = Downlink period

Downlink period= (recorded data
volume/communication efficiency) and
downlink possible position

*Recorded data volume < Recorder
capacity

field of view

Attitude changeable con

ition = within the sensor

Actuator operating performance

operation

*Low fuel consumption during actuator

Common constraint | Trajectory

(external environment,

*Track maintenance during operation

etc.)

15 September 2023

Downlink possible position
= satellite orbit and ground station position
* Average number of passes x average pass time

*The position and orientation must be such that the satellite
and ground station can communicate.

software product assurance workshop 2023

25

