
ARGOCD THE WAY WE CHOOSE

Package apps for GitOps
As we proceed, stage two focuses on packaging
applications for the GitOps approach. This involves
encapsulating configurations within version-controlled
repositories, paving the way for consistent and
repeatable deployments.

 STAGE 2

Deploy Argo CD
Distributed architecture with one ArgoCD by cluster
rather than one centralized ArgoCD. During this stage,
the journey kicks off with the deployment of Argo CD.
Setting up this GitOps tool lays the foundation for
streamlined application delivery and management.

 STAGE 1

App-of-Apps pattern
Advancing to stage five, the focus shifts to the App-of-
Apps pattern. Argo CD's ability to manage multiple
applications as a single entity simplifies complex
deployments, reducing operational complexity. It
enables teams to deploy with limited permissions.

 STAGE 5

Manage environments
Moving forward, stage three shines a light on
environment management. With Argo CD,
orchestrating different environments becomes
effortless, ensuring smooth transitions from
development to testing and production.

 STAGE 3

 STAGE 6

Benoît GARÇON
benoit@fgtech.fr

Deal with secrets
In stage four, attention turns to handling secrets
securely. Argo CD's integrations with secret
management systems empower us to manage sensitive
information without compromising on confidentiality.
Using a plugin or an operator is possible.

STAGE 4

Overview of an application on Argo CD [https://argo-cd.readthedocs.io/en/stable

Focus on stage 3
Master Your Environments Like a Pro
Runtime environment configurations should not be managed
via branches, but rather through folders or repositories to
leverage Git functionalities and simplify daily operations.

Focus on stage 4
Use Secrets in a Declarative Way
Secrets should not be exposed in plaintext within
configuration management; rather, it is imperative to manage
them in a centralized and version-controlled manner.

Focus on stage 6
Declarative CI to the Rescue of CD
If a well-designed architecture is in place, operations such as
promotion become simple copy-paste tasks that are easy to
automate.

common

envs

dev-eu

dev-us

prd-eu

prd-us

variants

eu

us

dev-eu prd-eu

GITOPS ROADMAP

Back to imperative CI
The journey concludes at stage six, circling back to
imperative actions when necessary. Argo CD's
flexibility allows us to address unique scenarios,
enabling both declarative GitOps and imperative
adjustments when needed.

Definition of GitOps
GitOps is a modern software delivery methodology that harnesses the power of
version control systems, typically Git, to manage and automate the deployment and
operation of applications and infrastructure. In the GitOps paradigm, the desired state
of the system is declaratively defined and stored in a Git repository. Automated
processes then continuously reconcile the actual state of the system with the
declared state, ensuring consistency, reliability, and traceability in the deployment
and management processes.

Definition of Continuous Integration (CI)
Continuous Integration (CI) is a software development practice where code changes
from multiple contributors are frequently integrated into a shared repository. Each
integration triggers an automated build and test process, helping to identify and
rectify integration issues early in the development cycle. The goal of CI is to ensure
that code changes are regularly and smoothly integrated, leading to a more stable
codebase and reducing the chances of integration conflicts.

Definition of Continuous Deployment (CD)
Continuous Deployment (CD) is an extension of Continuous Integration (CI) where
code changes that pass automated tests are automatically deployed to production
environments. This approach allows for rapid and frequent delivery of new features,
bug fixes, and enhancements to end-users. CD aims to minimize manual intervention
and streamline the release process, enabling teams to deliver software changes
quickly and reliably, while maintaining a high level of quality and stability in
production.

Tip: Deploying an instance of
Argo CD per environment helps
minimize the security impact of
a fault on a target using a pull
strategy rather than push.

Tip: The Git repository with
GitOps configuration should
have a folder for each
environment, rather than a
branch per environment.

Tip: The application should be
properly divided into at least
three Git repositories: source
code, Helm packaging, and
Argo CD configuration.

Tip: Implementing an App-of-
Apps pattern, enables Ops to
more easily manage the
application landscape while
granting flexibility to Devs.

Tip: To inject secrets into
Kubernetes clusters, use
operators like Sealed Secret or
HashiCorp Vault.

Tip: Configure automation
through continuous integration
(CI) for the application
promotion process to
normalize daily operations.

Discovering GitOps with Argo CD
Argo CD is an open-source platform tailored for Continuous Deployment in Kubernetes
environments, driven by GitOps principles. It offers automated, declarative management,
Helm support, a user-friendly UI, robust security features, audit capabilities.

How does Argo CD works ?
Argo CD adds four main types of resources.
Application: Define where and when a
configuration (Chart, manifest, etc.) is deployed.
AppProject: Define authorization for all
applications that use this AppProject.

Repository (secret): Define how to reach
the git repository (URL and credentials).
ApplicationSet: Define rules to automate
the generation of Application (kind of
“meta-Application”).

Navigating the Verbose Maze of
Technical Jargon (skip this part)

master prd

dev

mount secrets

pull secrets

commit & push pull & deploy

