
Consistent, Autonomous, Organization-Wide
Enforcement of Changing Software
Quality Standards using DevOps

JohanWestin
johan.westin@aikospace.com

Abstract

Compliance with spaceflight software quality standards necessitates using various analysis tools and

practices. However, ensuring these tools are used consistently across multiple projects requires

extensive training and documentation. Introducing new tools requires developers to add them to

each project manually. This costs valuable development time and risks inconsistency due to human

error. We present an autonomous system which can mitigate these problems. It consists of a highly

configurable project synchronization tool deployed in a three-tiered environment.

The core of the system is a synchronization tool which compares a software project to a centrally

defined template. If the project does not adhere to the template, adherence issues are reported

to the user and automatically fixed, if possible. A project template can specify any number of

custom requirements, including specific analysis tools, the structure of DevOps pipelines, and a

particular development environment layout. Templates are stored and maintained independently of

the synchronization tool, allowing new requirements to be applied to all projects simultaneously, with

minimal effort.

The synchronization tool should be used locally by developers, remotely in version control, and

globally by administrators. Locally, developers use the tool to identify and resolve template adherence

issues. In version control, it is run regularly in Continuous Integration pipelines to highlight issues as

they appear. Finally, administrators use the tool to ensure it is being used correctly across projects,

and to check that adherence issues are not ignored. This three-tiered system ensures that software

quality is maintained organization-wide, even as new requirements are introduced. Streamlining

this process reduces development costs, allowing developers to spend more time on significant

problem-solving tasks.

The Project Synchronization Tool

The proposed system consists of a project synchronization tool (PST), a piece of software used in

three different contexts (see System Architecture). The PST has a command line interface, allowing it

to be used by developers, continuous integration (CI) pipelines, and by administrators. For illustration,

we use pst as the program name in example commands. The PST has two core features accessible

as subcommands: pst check and pst fix.

Check

The check feature takes an existing project (i.e., the working directory) as input, and reports to what

extent it adheres to a project template. Templates are dynamically generated lists of requirements

(see Templates), and pst check reports which of these are not satisfied by the current project. pst
check can be seen as a highly configurable static analysis tool.

Fix

The fix feature is similar to pst check, but additionally attempts to automatically resolve any identified

issues. pst fix is analogous to a formatter, though its scope is broader than most formatting tools.

In fact, both pst check and fix may run other linters and/or formatters on the project, in addition

to custom tools.

Some issues may be unfeasible to fix autonomously, and are instead reported and left for developers

to fix manually. For example, if pst has never been run in the project before, the user is prompted to

specify a project type, name etc. Whenever possible, pst fix will run iteratively until all issues are

resolved.

SystemArchitecture

To maximize its effectiveness, the project synchronization tool should be used in three different

contexts: in the development environment, in version control, and in an administration environment.

The following figure gives an overview of this architecture.

Developers use pst check locally to verify the quality of new contributions. When adherence issues

are found, pst fix is used to apply and push prescribed fixes.

Continuous integration pipelines run pst check on the version control server. This provides devel-

opers and administrators with immediate feedback on template adherence issues, enabling rapid

iteration. The CI pipeline also runs other automated actions like building, testing, documenting and

releasing the software, allowing developers to focus their efforts on implementing new features.

Finally, the administration environment is used to ensure that the PST is used correctly in all projects.

There are two main situations in which enforcement becomes necessary:

The PST has not yet been set up in a project.

Developers are not implementing PST fixes when necessary.

To mitigate these two situations, an administrative team (which includes product assurance engineers)

periodically runs pst check on every software project. This ensures that the PST is integrated into

every project, and that neglected fixes are implemented when needed.

When used correctly, the PST can automatically manage a project’s configuration within the local and

remote contexts. This means administrative enforcement is only necessary in rare cases, allowing

many projects to be managed by a relatively small admin team.

Templates

Templates are used by pst check and pst fix to generate a sequence of requirements. These

are generated dynamically based on the project state (including project parameters). It contains

a hierarchy of requirements, with e.g. the existence of certain files and parameters being ”root”

requirements, while things like file contents, formatting and parameter values are derived from these.

Requirements are used by pst check to identify issues that need to be fixed. Each requirement has

an associated fix action, which is what pst fix will do if the requirement is not met.

For the PST system concept to function effectively, all templates should require that a CI pipeline is

defined for the project. The following table shows a simplified example of what template requirements

and fix actions for creating a CI pipeline could look like. This example uses Gitlab as the CI framework

and Pylint as an example third-party linting tool, though any other collection of tools can be used for

similar purposes.

Requirement Fix Action

The project shall contain a .gitlab-ci.yml file. Create an empty .gitlab-ci.yml file.

.gitlab-ci.yml shall contain a job template. Create a .job: ... section in the file.

The job template shall not be allowed to fail. Set allow_failure: false in .job.
The job template shall be interruptible. Set interruptible: true in .job.
…

.gitlab-ci.yml shall contain a Pylint job. Create a pylint: ... section.

pylint shall inherit from .job. Set extends: .job in pylint.
pylint shall run Pylint on all Python files. Set script: tools/run-pylint.sh.

tools/run-pylint.sh shall exist. Create run-pylint.sh from a template.

…

.gitlab-ci.yml shall contain a project check job. Create a project-check: ... section.

project-check shall run pst check. Set script: pst check
…

.gitlab-ci.yml shall contain a build job Create a build-library: ... section.

…

.gitlab-ci.yml shall contain a unit testing job Create a tests: ... section.

tests shall use the built library. Set dependencies: [build-library].
…

.gitlab-ci.yml shall contain a deployment job. Create a deploy: ... section.

deploy shall only run if all other jobs pass Set when: on_success.
…

This granular approach is advantageous in terms of code re-use and abstraction. Templates can

be specified using data formats like JSON or Yaml. Requirement types are specified by name (e.g.

"file_shall_exist") and correspond with a specific behavior (e.g. creating the specified file).

Furthermore, groups of requirements and actions can be collected together and re-used to construct

large templates with a relatively short definition.

Template Maintenance

The set of requirements and fix actions prescribed by a template will differ between project types

and organizations. Product assurance engineers are tasked with ensuring that templates correspond

with best practices, and that they accurately reflect the needs and standards of the organization. A

user feedback mechanism is used to gather and implement ideas for template changes.

In addition to a fix action, each template requirement has an associated description and ID. Descriptions

summarize what the requirement does and why it is part of the template. The description and ID are

automatically shown when a requirement fails during pst check or fix. This allows the user to send

feedback (using pst feedback <ID>) suggesting changes to the template. The product assurance

team may then incorporate these suggestions into future template versions.

This approach to template maintenance is used to streamline the integration of new tools and

techniques. Developers and product assurance engineers can independently research and test new

tools for inclusion in future PST templates.

By encouraging regular feedback on templates, developers can globally automate repetitive tasks. If

a developer notices that they often perform the same action e.g. during project setup, a requirement

which automates the action for every project eliminates this time investment for the entire team.

Finally, this maintenance approach allows the PST software and the templates it uses to be kept

separate. Since templates can be defined purely as data, updates to the core PST software is only

necessary when a new type of fix action is needed.

Summary

The system presented here consists of a project synchronization tool (PST) used in three context

by developers, CI pipelines and product assurance engineers. The PST automatically checks and

fixes projects against a dynamically generated template. It is designed to be run frequently in many

different contexts to provide continuous feedback and quality improvements.

The aim of the PST system is to improve the efficiency of product assurance, configuration manage-

ment and development. Autonomous fixes are implemented whenever possible, and the effort of

applying these fixes is distributed between team members. This reduces the time spent on repetitive

tasks, improves overall project quality and helps keep an entire organization closer to the cutting

edge.

aikospace.com AIKO S.r.l., Turin, Italy info@aikospace.com

https://aikospace.com/
info@aikospace.com

