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1 Introduction

The Absolute Pointing Error (APE) plays a key role in the specification of
the pointing requirements for the spacecraft. In the subsequent characteriza-
tion of the operational performance, the 68th percentile of this quantity (the
APE68)—upon which the requirements are placed—is estimated by means of
calibration observations. For the Herschel mission, a two-stage process was
used. First, a set of observations (comprising measurements of the mispoint-
ing about two perpendicular axes) was used to estimate the mean and the
standard deviation of the underlying population distribution of offsets for
each axis.1 Then, the root-sum-square of these two standard deviations was
computed. The resulting quantity, referred to in [13] as the APE†, can thus
be considered as providing an approximation to the estimated APE68 for the
case where the mean offsets are neglected.

It is shown in this note how the approximation inherent in using the
APE† may be avoided and how the estimated quantities (population means
and standard deviations) may be used to compute an improved estimate of
the APE68, both with and without the mean offsets included. The results
given in [13] are reproduced using the new method, thus allowing the effect
of both the approximation and of excluding the mean offsets to be assessed.

Although the new method effectively eliminates the errors that were in-
troduced through using the APE† as a proxy, the resulting values for the
APE68 remain estimates, based as they are upon four estimated parame-
ters. Therefore, to put the former errors into context, confidence intervals
(and standard errors) for the estimated parameters are derived and these, in
turn, are used to investigate the uncertainty in the resulting estimate of the
APE68 for one long period of the mission (for which there were almost 200
calibration measurements).

In the past, results have also been presented for many much smaller data
sets, corresponging to relatively short ranges of operational days (ODs). It is
shown that much of the variation that has been observed between samples,
both in the APE† and in the mean offsets, is consistent with the uncertainties
that one would expect from using small samples. By means of Welch’s t-test,
it has been found that there are indeed some cases were the mean offsets
change significantly between samples. However, as has been noted elsewhere
[e.g. 13], such changes are likely to result from the highly attitude-dependent

1The population distributions are assumed to be normal.
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nature of the star tracker bias errors. They need not reflect a concomi-
tant change in the relative alignment between the instrument and the star
tracker. To examine whether there are significant changes in the APE† (or
the APE68) between data sets, requires testing the data for homoscedasticity.
One such test, Bartlett’s test, has been used on two particular data sets to
show that they are very likely heteroscedastic (indicating that the APE† had
changed) or simply that the population distributions are non-normal (a very
real possibility). With the operational mission now over, the APE68 is fixed
and it could be argued that there is little value in pursuing these matters
further. However, with work on-going aimed at a reduction of the ground-
based Absolute Measurement Error (AME), it may be worthwhile to return
to some of the issues touched on in this document, and perform a thorough
set of hypothesis tests, in connection with the computation (estimation) of
the AME68.

According to the system requirements specification, the “pointing error
specifications. . . are specified at a temporal probability level of 68%, which
implies that [the] error will be less than the requirement for 68% of the time”
[6, ch. 4, p. 16]. It is easy to see from Section 3, that the 68th percentiles
which have been estimated to date (both in this document and elsewhere)
are not in line with this definition. Firstly, the method computes the 68th
percentile from a theoretical, infinite population of observations rather than
from the actual set of observations. Secondly, the 68th percentile is computed
with respect to the number of observations rather than with respect to the
time. And finally, the method does not include the effect of spacecraft jitter
(which strictly speaking contributes to the APE).

To remedy these problems an alternative method of computing the APE68,
based on the reconstructed attitude, is suggested in Section 5. However, it
might still be argued that whilst the APE68 computed using this alterna-
tive method provides (or should provide) a more realistic representation of
the accuracy which was actually achieved during the Herschel mission and
whilst it may be in closer conformance with the requirements specification,
it nevertheless does not provide a very good indicator of any improvements
made to the pointing system. This is due to the fact that for much of the
mission the APE was highly attitude-dependent, so that the value of the
APE68 achieved was highly sensitive to the particular sequence of scientific
observations chosen and to the time spent in each observation. For charac-
terizing the operational performance of the pointing system the use of the
APE68 is perhaps not altogether appropriate and a more detailed description
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might be preferable.

2 Definition of APE68

The Absolute Pointing Error (APE) is defined as the instantaneous sep-
aration between the actual and the commanded payload attitudes [see 5,
Section 1 3.1.1]. For the Herschel Observatory, the APE (for each instru-
ment) was decomposed into two components: the angular separation between
the actual and the commanded boresight directions and the angular separa-
tion about the (actual) boresight direction. Each of these error indices may
be modelled as a random process and confidence levels may be used both to
impose requirements and to characterize the actual pointing performance.

As discussed in [5, Section 1 4], there are two distinct ways of attaching
a meaning to the term ‘confidence level’. The statistical distribution of the
error index may refer either to: (i) the variation of the error index over an
imaginary ensemble of spacecraft; or (ii) its variation over time.2 Confidence
levels may be applied to either (or both) of these distributions. In the System
Requirements Specification, a temporal definition was employed and limits
were given that each error index was required to not exceed (at 100% proba-
bility) for at least 68% of the time.3 Since we only have access to calibration
measurements from a single member of the ensemble of possible Herschel
space missions (the actual Herschel mission) it makes sense to also use this
temporal definition when characterizing the actual APE. We can neverthe-
less interpret the values we obtain as relating to the distribution over the
ensemble (at any given time) by simply making the assumption of ergodicity.
However, this does not affect the calculation, merely the interpretation of
the results.

Furthermore, since all the calibration measurements relate to the direc-
tion of the boresight of the PACS instrument, it is only possible to derive
confidence levels for a single APE index, namely the angular separation be-
tween the actual and the commanded PACS boresight direction. We will

2This statement is at least true when the error index is a continuous parameter process
and the parameter used is the time. However, in our estimation of the APE68, the error
index is a discrete parameter process (random sequence) and the parameter used to index
the family of random variables is the observation number.

3For example, for pointed observations, it was required that for 68% of the time the
angles between and around the boresight directions should remain below 3.7′′ and 3.0′

respectively [6, ch. 4, p. 17].
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treat this (strictly speaking) realization of a random process as a random
variable, which we shall denote by ∆R, and write its (cumulative) distribu-
tion function over the period of interest as F∆R(∆R). The 68th percentile of
our APE index, APE68, is then (by definition) APE68 ≡ F−1

∆R(0.68).4

3 Estimation of APE68 and APE′68

3.1 Estimation of pointing offset distributions

The raw data used in the calculations described below were obtained during
various calibration campaigns performed throughout the mission. For some
of the assessments described in [13], such as the comparison of the point-
ing performance between mission periods,5 there were a large number, n, of
measurements available; for other assessments the number of available mea-
surements was much smaller (in the worst-case, n = 17). The data consist of
measurements of the mispointing of the PACS boresight; each measurement
consisting of a pair, (∆Yi, ∆Zi), of angles giving the offsets in the directions
of the spacecraft (ACA-frame) y- and z-axes.6 Since each calibration obser-
vation contributes a single pair of offsets to the APE computation and these
offsets result from averaging many individual measurements made within the
observation, it follows that the computation (estimation) of the APE68 does
not include the contribution from short-term variations of the spacecraft at-
titude, such as the high-frequency jitter. Furthermore, it is clear that it is
impossible to use these calibration data to calculate a 68th percentile that
conforms with the definition given in the requirements specification. That
is, since the measurements are indexed with respect to the (calibration) ob-
servation number, and not the time, the probability level that is calculated

4In much of the post-launch Herschel documentation, the confidence level APE68 is
referred to simply as the APE.

5For the purpose of assessing the pointing performance, the mission has been divided
into five distinct periods [see 13]. These periods, numbered 1–5, correspond to the intervals
between the following events: Launch (OD 1), reduction of STR baseplate temperature
(OD 320); uplink of ‘1D-correction’ (OD 762); uplink of ‘2D-correction’ (OD 866); uplink
of ‘full correction’ (OD 1011); and depletion of liquid helium (OD 1446). (A further
measure was taken during period 5 to improve the pointing performance: in OD 1032 the
‘tracking’ flag was disabled for 73 stars in the on-board catalogue.)

6For the discussion presented in this note, the sign convention used for these offsets is
irrelevant. Clearly, this decomposition of the mispointing into the two angles, ∆Yi and
∆Zi, relies on the assumption that the pointing offset is small.
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cannot be temporal.
For each data set {(∆Yi, ∆Zi), i = 1, . . . , n}, it was assumed that the

measurements come from distributions that are normal, i.e. ∆Y ∼ N(µy, σ
2
y)

and ∆Z ∼ N(µz, σ
2
z) and unbiased estimates of µy, µz, σ

2
y and σ2

z were
calculated according to:

my =
1

n

n∑
i=1

∆Yi, s2
y =

1

n− 1

n∑
i=1

(∆Yi −my)
2,

mz =
1

n

n∑
i=1

∆Zi, s2
z =

1

n− 1

n∑
i=1

(∆Zi −mz)
2.

The resulting values of my, mz, sy and sz are given in [13] where they are
referred to as 〈∆Y 〉, 〈∆Z〉, σY and σZ .7

3.2 Calculation of APE68

Having characterized the distributions ∆Y and ∆Z through the estimation
of µy, µz, σ

2
y and σ2

z , it remains to use these quantities to obtain an estimate
of APE68.8

The angles ∆Yi and ∆Zi are assumed to be small,9 so that

∆Ri =
√

(∆Yi)2 + (∆Zi)2.

It follows that the distribution function of ∆R is given by

F∆R(∆R) =
x

D∆R

p∆Y,∆Z(∆Y,∆Z) d(∆Y ) d(∆Z), (1)

where p∆Y,∆Z is the joint (probability) density function of ∆Y and ∆Z and
D∆R = {(∆Y,∆Z) : (∆Y )2 + (∆Z)2 ≤ (∆R)2}. If we also assume that the
random variables ∆Y and ∆Z are independent, so that

p∆Y,∆Z(∆Y,∆Z) = p∆Y(∆Y ) p∆Z(∆Z) =
1

2πσyσz
e
− 1

2

(
(∆Y−µy)2

σ2
y

+
(∆Z−µz)2

σ2
z

)
,

(2)

7Note that sy and sz are biased estimates of σy and σz. That is, E(sy) 6= σy and
E(sz) 6= σz, where sy and sz denote the random variables corresponding to sy and sz.

8Although the estimates of µy, µz, σ
2
y and σ2

z are all unbiased, it does not follow that
the resulting estimate of APE68 will be unbiased.

9See footnote 6.
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then, upon setting y = ∆Y and z = ∆Z, (1) becomes

F∆R(∆R) =
1

2πσyσz

x

D∆R

e
− 1

2

(
(y−µy)2

σ2
y

+
(z−µz)2

σ2
z

)
dy dz

=
1

2πσyσz

∆R∫
y=−∆R

dy e
− (y−µy)2

2σ2
y

√
(∆R)2−y2∫

z=−
√

(∆R)2−y2

dz e
− (z−µz)2

2σ2
z

=
1

2σy
√

2π

∆R∫
y=−∆R

dy e
− (y−µy)2

2σ2
y

[
erf

(√
(∆R)2 − y2 − µz

σz
√

2

)

− erf

(
−
√

(∆R)2 − y2 − µz
σz
√

2

)]
,

(3)

where erf is the error function. The function F∆R is monotonically strictly
increasing and continuous, so it is a straightforward matter to use an iterative
method to find APE68 ≡ F−1

∆R(0.68) numerically. (In practice we use our

estimates my, mz, s
2
y and s2

z to find an estimate for APE68, i.e. ÂPE68.)

3.3 Calculation of APE′68

The mean offsets, µy and µz, were initially interpreted as indicating the
misalignment of the PACS instrument [13, p. 8]. Since a known misalignment
could easily be corrected by updating the appropriate Spacecraft Instrument
Alignment Matrix (SIAM), it was also of interest to find the reduced value of
APE68 which would result following such an update. We will denote this new
value of APE68 by APE′68 and define it to be 68th percentile of the random
variable

∆R′ ≡
√

(∆Y− µy)2 + (∆Z− µz)2,

with distribution function

F∆R′(∆R
′) =

x

D∆R′

p∆Y,∆Z(∆Y + µy,∆Z + µz) d(∆Y ) d(∆Z). (4)

Since F∆R′(∆R
′) = F∆R(∆R)|µy=µz=0, we may use (3) to compute F∆R′(∆R

′).
However, a simpler expression for F∆R′(∆R

′) is obtained upon substituting
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(2) into (4):

F∆R′(∆R
′) =

1

2πσyσz

x

D∆R′

e
− 1

2

(
y2

σ2
y

+ z2

σ2
z

)
dy dz

=
2

π

π/2∫
θ=0

dθ

g(∆R′,θ)∫
r=0

dr re−
r2

2 , (y = σy r cos θ, z = σz r sin θ)

where g(∆R′, θ) = ∆R′(σ2
y cos2 θ + σ2

z sin2 θ)−
1
2 ,

=
2

π

π/2∫
θ=0

[
1− e−

g(∆R′,θ)2

2

]
dθ

= 1− 2

π

π/2∫
θ=0

e
− (∆R′)2

2(σ2
y cos2 θ+σ2

z sin2 θ) dθ.

(5)

As a check on this result, we note that if σy = σz = σ say, the right-hand side
of (5) may be integrated a second time, giving—as would be expected—the

distribution function, F∆R′(∆R
′) = 1 − e−

(∆R′)2

2σ2 , for a Rayleigh distribution
with scale parameter σ. (In this particular case, APE′68 = F−1

∆R′
(0.68) =

σ
√
−2 ln 0.32 ≈ 1.51σ.)
In the general case, where σy 6= σz, we again note that F∆R′ is monoton-

ically strictly increasing and continuous, and so use an iterative method in
conjunction with (5) to solve F∆R′(APE′68) = 0.68 numerically. (In practice

we use our estimates s2
y and s2

z to find an estimate for APE′68, i.e. ÂPE
′
68.)

3.4 Approximation of ÂPE
′
68 by APE†

In the various documents where the pointing performance has been reported

[e.g. 12, 13] equations (3) and (5) have not been used. Instead the ÂPE
′
68

has been approximated by the root-sum-square of the two estimated standard
deviations, a quantity referred to in [13, p. 12] as the APE†, i.e.

APE† ≡
√
s2
y + s2

z =

√√√√ 1

n− 1

n∑
i=1

(∆Yi −my)2 + (∆Zi −mz)2.
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From Section 3.3, it is seen immediately that when s2
y = s2

z, this approxima-

tion introduces an additional error of (
√
−2 ln 0.32 −

√
2)sy ≈ 0.10 sy. The

accuracy of this approximation when sy 6= sz is investigated in Section 4.2.

4 Accuracy and interpretation of the results

4.1 Accuracy of APE68 and APE′68 estimates

The iterative method of computing the APE68 and APE′68, by means of (3)
and (5) respectively, can in principle be performed to whatever accuracy is
desired and so this calculation does not introduce any errors, beyond those
made in assuming that the measurement errors come from independent nor-
mal distributions, i.e. ∆Y ∼ N(µy, σ

2
y) and ∆Z ∼ N(µz, σ

2
z). To test this

assumption properly we would have to return to the original measurement
data and to apply a test for normality, such as the Anderson–Darling test,
Kuiper’s test or the Shapiro–Wilk test [2, 10, 14]. In the absence of such
testing, it is only possible to get an indication of the normality of these dis-
tributions from an examination of the histograms in [12, 13]. It is further
known that roll errors about the ACA x-axis will lead to some correlation
between the ∆Y and ∆Z distributions.

However, the accuracy of our estimated quantities, ÂPE68 and ÂPE
′
68,

will also depend on the accuracy of the estimates of µy, µz, σ
2
y and σ2

z , i.e.
on the accuracy of my, mz, s

2
y and s2

z.
10 Based on our assumption that the

parent distributions are normal, we have:

my ∼ N

(
µy,

σ2
y

n

)
, s2

y ∼
σ2
y

n− 1
χ2
n−1,

mz ∼ N

(
µz,

σ2
z

n

)
, s2

z ∼
σ2
z

n− 1
χ2
n−1,

(6)

where my, mz, s2
y, s2

z are the random variables corresponding to my, mz, s
2
y

and s2
z. Noting that var{χ2

n−1} = 2(n − 1), it follows that the estimated

10The accuracy of ÂPE
′
68 depends only on the accuracy of s2

y and s2
z.
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standard errors in the means and the variances are:

σ̂my =
σ̂y√
n
, σ̂s2

y
= σ̂2

y

√
2

n− 1
,

σ̂mz =
σ̂z√
n
, σ̂s2

z
= σ̂2

z

√
2

n− 1
,

(7)

where σ̂y, σ̂z, σ̂2
y and σ̂2

z are our estimates of the population standard de-
viations and variances. (If required, values for the standard errors in the
standard deviations can also be calculated; see Appendix A.) Since the esti-
mated means, my, mz, come from normal distributions, the relation between
their estimated standard errors and the confidence intervals for µy and µz is
well-known. For example, the 68% confidence interval for µy is

my − σ̂my < µy < my + σ̂my . (8)

The estimated variances, s2
y and s2

z, come from scaled χ2-distributions. There-
fore, the calculation of confidence intervals for σ2

y and σ2
z is more involved.

For example, a 68% confidence interval for σ2
y (allowing 34% probabilty on

either side of the expected value) is:

σ̂2
y

n− 1
F−1
χ2
n−1

(0.16) < σ2
y <

σ̂2
y

n− 1
F−1
χ2
n−1

(0.84), (9)

where Fχ2
n−1

is the distribution function for a chi-squared distribution with
n− 1 degrees of freedom. These limits can be found iteratively, using

Fχ2
n−1

(x) = P

(
n− 1

2
,
x

2

)
,

where P is the lower (regularized) incomplete gamma function.

Example 1 (period 2)

As an illustration we consider the estimation of the APE68 and APE′68 for
period 2. Using the data in [13, Table 4, top line], we have n = 196 and:

my = −0.40′′, sy = 1.17′′,

mz = −0.13′′, sz = 2.05′′.
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Ignoring the very slight bias introduced by using sy and sz as estimates of
σy and σz, we may take:

σ̂y = sy = 1.17′′, σ̂2
y = s2

y = 1.172 = 1.37′′
2

,

σ̂z = sz = 2.05′′, σ̂2
z = s2

z = 2.052 = 4.20′′
2

.

From (7) it follows that:

σ̂my = 0.08′′, σ̂s2
y

= 0.14′′
2

,

σ̂mz = 0.15′′, σ̂s2
z

= 0.43′′
2

,

and from (8) and (9), together with the equivalent inequalities for the z-axis,
we obtain the 68% confidence intervals:

−0.48′′ <µy < −0.32′′,

−0.28′′ <µz < 0.02′′,

and

1.23′′
2

<σ2
y < 1.51′′

2

,

3.78′′
2

<σ2
z < 4.62′′

2

.

(Although the above confidence intervals for σ2
y and σ2

z were calculated by

iteratively determining that F−1
χ2

195
(0.16) = 175.4 and F−1

χ2
195

(0.84) = 214.6, it

is seen that in both cases, almost identical results would have been obtained
if we had simply used the standard errors σ̂s2

y
and σ̂s2

z
.)

Despite there being no simple relationship between these confidence inter-
vals and those for the APE68 and APE′68—the best that could be done would
probably be to use Monte Carlo simulations—we can obtain some idea of the
likely errors by calculating the APE68 and APE′68 for those values of µy, µz,
σ2
y and σ2

z (within the 68% confidence limits) which produce the best (lowest)
and worst (highest) values. The results are shown in Table 1. The nominal
values of the APE68 and APE′68 (those calculated using the expected values
of µy, µz, σ

2
y and σ2

z) are 2.50′′ and 2.45′′ respectively. It is seen that, for
period 2, there is little difference between the APE68 and the APE′68 and
with 196 observations the results are likely to be reasonably accurate.
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σ2
y = 1.23 σ2

y = 1.51
σ2
z = 3.78 σ2

z = 4.62
µy = 0
µz = 0 2.32 2.57
µy = -0.32
µz = 0 2.35 2.60
µy = -0.48
µz = -0.28 2.41 2.65

Table 1: APE68 and APE′68 for period 2 (arcsec.)

Example 2 (cycles 23–31)

As a second illustration, we consider the estimation of the APE68 and APE′68

using the 51 measurements from cycles 23–31. According to [13, Table 3],
we have:

my = −0.58′′, sy = 1.33′′,

mz = −0.30′′, sz = 2.26′′.

Using the above values of sy and sz to derive our best estimates of σy, σz, σ
2
y

and σ2
z (the values of sy and sz for the entire period 2 are fairly similar), we

obtain the standard errors:

σ̂my = 0.19′′, σ̂s2
y

= 0.35′′
2

,

σ̂mz = 0.32′′, σ̂s2
z

= 1.02′′
2

.

From these we obtain the 68% confidence intervals:

−0.77′′ <µy < −0.39′′,

−0.62′′ <µz < 0.02′′,

and

1.42′′
2

<σ2
y < 2.12′′

2

,

4.08′′
2

<σ2
z < 6.13′′

2

.

The estimated value for the APE′68 using the data from these cycles is 2.73′′

(see Table 2). However, it is clear by simply comparing the above confidence
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intervals for σ2
y and σ2

z with those in example 1, that there is no reason
to believe that the APE′68 was in fact any higher during cycles 23–31 than
during the rest of period 2. Similarly, there is no reason to suspect that the
mean offsets were any different.

If the same calculation is performed for cycles 15–22, a period for which
a low value of APE† was recorded (i.e. 1.99′′), it is found that:

0.57′′
2

<σ2
y < 0.87′′

2

,

2.55′′
2

<σ2
z < 3.93′′

2

.

indicating that σ2
y may have been lower during these cycles. To investigate

this further, we apply Bartlett’s test to the samples from cycles 15–22 and
cycles 23–31.11 For the y-axis, we obtain a p-value of 0.003, indicating that
there is very strong evidence that either σ2

y has changed between these two
periods or that the population distributions are non-normal. (In comparison,
the p-value for the z-axis is 0.12, so that there is little reason to believe that
σ2
z has changed.) Other tests for homoscedasticity exist which do not rely

on the population distributions being normal, but in general these require a
knowledge of the individual measurements within each sample.

4.2 Accuracy of APE†

In practice, the APE† (see Section 3.4) has been used as a proxy for the

ÂPE
′
68. To investigate the accuracy of this ‘approximation’, the values of

these two quantities have been computed for each of the data sets (i.e. values
of my, mz, sy and sz) given in [13].12 The results are given, along with the

corresponding values of the ÂPE68 in Table 2.13 It can be seen that the
error introduced through the use of the APE† is typically 0.1′′, which is less

than the uncertainty in the ÂPE
′
68, even for a case where there are many

observations such as that considered in example 1 above.

11For the comparison of two samples, of size n1 and n2 and variance s2
1 and s2

2, Bartlett’s
test statistic is:

X2 =
(N − 2) ln(s2

p)− (n1 − 1) ln s2
1 − (n2 − 1) ln s2

2

1 +
(

1
n1−1 + 1

n2−1 −
1

N−2

)
/3

,

where s2
p = 1

N−2 [(n1−1)s2
1 + (n2−1)s2

2] and N = n1 +n2. The associated p-value is given
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Table no. in [13]. my(
′′) mz(

′′) sy(
′′) sz(

′′) APE†(′′) ÂPE
′
68(′′) ÂPE68(′′)

2 — — 1.09 1.56 1.90 2.01 2.01
-0.45 -1.71 1.23 1.51 1.95 2.07 2.84
-0.35 -1.67 1.23 1.72 2.11 2.23 2.89
-0.57 -1.75 0.93 1.22 1.53 1.63 2.61

3 -0.83 -0.17 0.85 1.80 1.99 2.04 2.27
-0.58 -0.30 1.33 2.26 2.62 2.73 2.83
-0.08 0.19 1.05 2.03 2.29 2.35 2.36
-0.16 0.56 1.06 1.67 1.98 2.07 2.15
-0.01 -0.58 1.10 1.19 1.62 1.73 1.84
0.27 -0.57 1.12 2.05 2.34 2.42 2.50

-0.62 0.55 1.28 2.65 2.94 3.01 3.15
4 -0.40 -0.13 1.17 2.05 2.36 2.45 2.50

-0.26 0.90 0.92 1.12 1.45 1.54 1.84
-0.27 0.54 0.70 0.65 0.96 1.02 1.22
-0.13 0.20 0.79 0.80 1.12 1.20 1.23

5 0.38 0.77 1.24 2.01 2.36 2.47 2.62
0.61 0.76 0.52 0.74 0.90 0.95 1.44

7 -0.34 -0.86 0.73 1.15 1.36 1.43 1.73
8 0.25 0.30 0.94 1.30 1.60 1.69 1.74

Table 2: Comparison of APE† with ÂPE
′
68 (and ÂPE68).

4.3 APE′68 or APE68?

As noted in Section 3.3, it was initially believed that the measured mean
offsets, my and mz, would provide estimates of the instrument misalignments.
It was therefore assumed that following each set of calibrations the SIAMs
would be updated to reflect the newly-estimated alignments. This would then

have had the effect of reducing the estimated value of the APE68 to ÂPE
′
68

for the subsequent observations. (For observations prior to any such SIAM
update, the value of the APE68 would of course remain unchanged, although

by p = 1− Fχ2
1
(X2) = 1− P

(
1
2 ,

X2

2

)
, where P is the lower incomplete gamma function.

12The data in the third row of Table 2 of [13, p. 12] are inconsistent:
√

1.232 + 1.722 6=
2.24. I have assumed that it is the root-sum-square value that is incorrect.

13To provide a check on the results, the computation of ÂPE
′
68 was made both with (3),

setting µy = µz = 0, and with (5).
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the 68th percentile of the ground-based Absolute Measurement Error, the
AME68, would be reduced.)

However, at a certain point in the mission (during period 2) there was
some doubt that the measured mean offsets between calibrations were ac-
tually reflecting real changes in the instrument alignments and a decision
was taken to no longer update the SIAMs. Consequently, it would seem
that the justification for using the estimate of the APE′68 (or its proxy the
APE†)— even as an indication of the Absolute Measurement Error—ends at
this point in the mission and thereafter a more realistic measure is provided
by the estimated APE68.

The estimation of the APE68 is itself not without problems. As already
described in [13, 15, 17], for much of the mission a large contribution to the
APE came from bias errors introduced by the star tracker measurements.
These bias errors are extremely attitude-dependent, resulting as they do
from the particular locations of the guide stars within the field-of-view of
the star tracker or from thermoelastic distortion, which it is conjectured
may arise if reflected sunlight impinges on the star tracker mounting when
observing at extreme values of the solar aspect angle. Since all the calibration
observations associated with a given observation cycle (or OD range) were
constrained to use a very similar attitude [13, pp. 10–11], it follows that the
measured attitude errors for a short OD range are not very representative
of those which were actually experienced during the scientific observations,
when the spacecraft may have been at quite different attitudes. This may
also provide an explanation for the occasionally large changes in the mean
offsets that were measured for different observation cycles.

For example, consider the five sets of measurements shown in Table 3
(taken from [13, Table 3]). To investigate whether the population means,
µy and µz, have changed between sets corresponding to adjacent ranges (of
observation cycles) we apply Welch’s t-test.14 The null-hypothesis is that
the population means are equal, so we use a two-tailed test. The resulting
values of the test statistic, tij, the degrees-of-freedom, νij, and the p-value,

14To allow for the fact that the population variances may be unequal, Welch’s version of
Student’s t-test has been used. It would be interesting to test the data for homoscedasticity.
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pij, for each case and for each axis are given in Table 4.15 It is seen that

Set Cycles n my (′′) mz (′′) s2
y (′′

2
) s2

z (′′
2
)

1 15–22 45 -0.83 -0.17 0.72 3.24
2 23–31 51 -0.58 -0.30 1.77 5.11
3a 32–36 40 -0.08 0.19 1.10 4.12
3b 33–36 34 -0.16 0.56 1.12 2.79
4 37–39 22 -0.01 -0.58 1.21 1.42

Table 3: Measured means and variances

Case y-axis z-axis
i j tij νij pij tij νij pij
1 2 -1.11 86 0.27 0.31 93 0.76
2 3a -2.00 89 0.05 -1.09 87 0.28
2 3b -1.61 80 0.11 -2.01 82 0.05
3a 4 -0.24 42 0.81 1.88 60 0.07
3b 4 -0.51 44 0.61 2.98 53 0.00(4)

Table 4: Welch’s test: test statistic, degrees-of-freedom and p-value

there are two borderline cases where the null-hypothesis could be rejected at
the 0.05 level and one case (the comparison of mz from sets 3b and 4), where
it would be rejected even at the 0.005 level. So only in these three cases
(particularly the last) is there good evidence for concluding that there has
been a real change in mean value of the offsets.16 However, as noted above,

15Let mk, s2
k and nk be the mean, variance and size of sample (set) k, then

tij =
mi −mj√
s2i
ni

+
s2j
nj

, νij ≈

(
s2i
ni

+
s2j
nj

)2

s4i
n2
i νi

+
s4j
n2
jνj

,

where νk = nk − 1. The p-values were obtained using an on-line calculator: http://

onlinestatbook.com/lms/calculators/t_dist.html.
16An application of Welch’s t-test to the data sets for ODs 731 and 733 [13, Table 3],

produces p-values of 0.03 (y-axis) and 0.15 (z-axis). It appears that the explanation for
this significant (at the 0.05 level) difference in the means for the y-axis offsets is that the
second set of calibrations was performed with the redundant star tracker.

http://onlinestatbook.com/lms/calculators/t_dist.html
http://onlinestatbook.com/lms/calculators/t_dist.html
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it is likely that much of the mean offsets is due to star tracker bias errors
associated with the particular attitudes used for the calibration observations.

Work is currently underway to improve the accuracy of the ground-based
pointing reconstruction. This accuracy is reflected in the AME68, the estima-
tion of which may be performed in an identical manner to that of the APE68,
with the exception that the ground-based reconstructed attitude replaces the
target attitude, i.e. (∆Yi, ∆Zi) become the offsets between the ground-based
estimate of the PACS boresight and its ‘true’ (PACS measured) direction.
It is expected that, following the implementation of these improvements, the
measured mean offsets will provide improved estimates of the instrument
alignments.

5 Alternative method of computing APE68

The method which has been described in Section 3 assumes that the mea-
sured pointing offsets, {∆Yi : i = 1, . . . , n} and {∆Zi : i = 1, . . . , n}, are
realizations of the (independent) random variables ∆Y ∼ N(µy, σ

2
y) and

∆Z ∼ N(µz, σ
2
z) and uses the two samples to estimate µy, µz, σ

2
y and σ2

z . The

APE68 that is then computed is the 68th percentile of ∆R =
√

(∆Y )2 + (∆Z)2.
However, it might be argued that the 68th percentile we are interested in is

not that associated with some theoretical infinite populations, but rather that
directly related to the actual (finite number of) observations corresponding
to a given period of the mission (perhaps the entire mission) and of perhaps
a certain type (pointed, scan, . . . ). Moreover, to conform with the require-
ments specification [6, ch. 4, p. 16], the APE should include the spacecraft
jitter and the 68th percentile which we should be calculating is with respect
to the time, not with respect to the number of observations. An alternative
approach to the calculation, which remedies these three issues, is simply to
use the ground-based reconstructed attitude to find how ∆R(t) varies with
the time, t, over each of the observations within a given set, and from this to
construct the distribution function for ∆R and hence compute the APE68.

Let the period for which we wish to calculate the APE68 contain m obser-
vations (of the chosen type) corresponding to the intervals [t

(1)
s , t

(1)
e ], [t

(2)
s , t

(2)
e ],

. . . , [t
(m)
s , t

(m)
e ], and let the distribution function of ∆R for the ith observation

be F
(i)
∆R(∆R). Then the distribution function for the entire period is given
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by:

F∆R(∆R) =
1

T

m∑
i=1

F
(i)
∆R(∆R) [t(i)e − t(i)s ],

where T =
∑m

i=1[t
(i)
e − t(i)s ].17

The distribution function F
(i)
∆R(∆R) for each individual observation could

be constructed empirically by comparing the target instrument boresight
direction (which might be approximated using the on-board filtered ACA-
attitude and the SIAM applied during operations) with the true instrument
boresight direction (as approximated using the ground-based reconstructed
ACA-attitude and an improved estimate of the instrument alignment) over

the interval t
(i)
s ≤ t ≤ t

(i)
e and finding the fraction of the observation for

which the error ∆R is less than certain user-selected values.18

Where the calibration measurements could still play a role is in obtaining
the improved estimate of the instrument alignments. The mispointing offsets
may be decomposed into three components: (i) the offsets due to the bias
errors in the star tracker attitude measurements; (ii) the offsets due to the
jitter in the ACA-frame attitude; and (iii) the offsets due to the misalignment
between the ACA-frame and the instrument (PACS) reference frame. The
new ground-based pointing reconstruction should be able to account for most
of the bias in the star tracker attitude measurements (i.e. the part resulting
from errors in the measured star positions) and the jitter [see 3, 4, 7, 8, 15,
16].19 To obtain improved estimates of the instrument alignments we might
therefore compare the reconstructed boresight direction with the boresight
direction as measured by PACS. It is hoped that it may also be possible
to model the effects of thermoelastic distortion by correlating this relative
alignment with a temperature measured on the spacecraft somewhere in the
viscinity of the star tracker supporting struts.

17To treat ∆R as a random variable, it is simply necessary to consider it to be a function
defined on the probability space associated with choosing times randomly and uniformly

from
⋃m
i=1[t

(i)
s , t

(i)
e ].

18Perhaps, as a first approximation—particularly for pointed observations early in the
mission (when star tracker bias errors dominated)—a constant value for ∆R could be
computed for each observation. In this case, F∆R(∆R) simplifies to a weighted sum of
Heaviside step functions.

19A small bias in the star tracker attitude measurements will also result from errors (e.g.
due to proper motion) in the catalogue positions of the tracked stars.
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A Standard errors in the estimated standard

deviations

From (6), estimates of the standard errors in the estimated population stan-
dard deviations, sy and sz, are given by:

σ̂sy =
sy√
n− 1

√
var{χn−1}

σ̂sz =
sz√
n− 1

√
var{χn−1},

(10)

where20

var{χn−1} = n− 1− 2

[
Γ(n

2
)

Γ(n−1
2

)

]2

. (11)

To obtain an idea of how these standard errors vary when n is large, we
derive an asymptotic series for

√
var{χn−1}.21

Let

f(m) =
1

m1/2

Γ
(
m+ 1

2

)
Γ (m)

,

where Γ is the gamma function. It may be shown [9, p. 602],22 that the
function f has the asymptotic expansion

f(m) ∼ 1− 1

8m
+

1

128m2
+

5

1024m3
+ · · · , as m→∞.

Since an asymptotic power series can be raised to an arbitrary power [11,
p. 298], it follows that

[f(m)]2 ∼ 1− 1

4m
+

1

32m2
+

1

128m3
+ · · · , as m→∞.

Therefore, from (11), we obtain:

var{χn−1} = (n− 1)

(
1−

[
f

(
n− 1

2

)]2
)

∼ 1

2
− 1

8(n− 1)
− 1

16(n− 1)2
+ · · · , as n→∞

20See http://en.wikipedia.org/wiki/Chi_distribution (accessed
on 18 March 2014).

21In fact, it will be seen that the first few terms of this series can be used to provide a
very good approximation for the (normalized) standard errors even when n is small.

22Graham et al. use the generalized factorial power m1/2 for
Γ(m+ 1

2 )
Γ(m) [see 9, p. 211].

http://en.wikipedia.org/wiki/Chi_distribution
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and hence√
var{χn−1} ∼

(
1

2
− 1

8(n− 1)
− 1

16(n− 1)2
+ · · ·

) 1
2

∼
√

2

2

(
1− 1

8(n− 1)
− 9

128(n− 1)2
+ · · ·

)
, as n→∞.

So finally from (10) we have:

σ̂sy ∼
sy√

2(n− 1)

(
1− 1

8(n− 1)
− 9

128(n− 1)2
+ · · ·

)
, as n→∞, (12)

with a similar expression for σ̂sz .
23 Figure 1 compares the values of the nor-

malized standard error, σ̂sy/sy, computed using the Matlab gamma func-
tion, with the approximate values obtained from (12).

Figure 1: Approximation of σ̂sy/sy using (12)

23The first terms of these asymptotic expansions are unchanged by the use of an unbiased
estimator [see 1].
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