
BSSC (2002)1 Issue 1.0
14 March 2002

european space agency / agence spatiale européenne
8-10, rue Mario-Nikis, 75738 PARIS CEDEX, France

ESA Ground Segment
Software Engineering
and Management
Guide

Part A Software Engineering

Prepared by:
ESA Board for Software
Standardisation and Control
(BSSC)

ii BSSC (2002)1 Issue 1.0
 DOCUMENT STATUS SHEET

DOCUMENT STATUS SHEET

DOCUMENT STATUS SHEET

1. DOCUMENT TITLE: ESA Ground Segment Software Engineering and
Management Guide : Part A Software Engineering

2. ISSUE 3. REVISION 4. DATE 5. REASON FOR CHANGE

1 0 March
2002

First Issue

Approved, March 2002
Board for Software Standardisation and Control
M. Jones, BSSC co-chairman U. Mortensen, BSSC co-chairman

Copyright © 2002 by European Space Agency

BSSC (2002)1 Issue 1.0 iii
TABLE OF CONTENTS

TABLE OF CONTENTS

DOCUMENT STATUS SHEET .. II

TABLE OF CONTENTS... III

PREFACE..X

INTRODUCTION...1
1.1 PURPOSE ...1
1.2 OVERVIEW..2
1.3 TAILORING THE GUIDE ...2

SOFTWARE LIFE CYCLE PROCESSES FOR GROUND SEGMENT......................4
2.1 INTRODUCTION..4
2.2 SPACE PROJECT ENGINEERING ..4
2.3 GROUND SEGMENT SYSTEMS ...5
2.4 LEVELS OF DECOMPOSITION ..7
2.5 SOFTWARE REQUIREMENTS FOR GROUND SYSTEMS.................................10
2.6 PROCESSES, ACTIVITIES AND TASKS...12
2.7 THE SOFTWARE LIFE CY CLE PROCESSES ..12

2.7.1 System Engineering for Software...13
2.7.2 Software Requirements Engineering..14
2.7.3 Software Design Engineering..15
2.7.4 Software Verification and Validation...16
2.7.5 Software Operations Engineering...16
2.7.6 Software Maintenance..17

2.8 GROUND SEGMENT SYSTEM ENGINEERING ..17
2.8.1 Ground Segment System Engineering Phases.....................................17
2.8.2 Mapping ECSS-E-40 onto GS System Engineering Phases20

2.9 SUPPORTING THE SOFTWARE ENGINEERING PROCESS22
2.9.1 Documentation ..22
2.9.2 Configuration Management..22
2.9.3 Software Product Assurance..23
2.9.4 Software Project Management...23

SYSTEM ENGINEERING FOR SOFTWARE ..25
3.1 INTRODUCTION..25

iv BSSC (2002)1 Issue 1.0
 TABLE OF CONTENTS

3.2 PROCESS INPUTS...26
3.3 ACTIVITIES..26

3.3.1 System Requirements Analysis..27
3.3.1.1 System requirements specification ..27
3.3.1.2 Criticality Analysis ...30

3.3.2 System Partitioning ..33
3.3.2.1 Partition requirements to appropriate subsystems.....................34
3.3.2.2 Define subsystem interfaces ..35

3.3.3 System Level Requirements for Software Verification and Validation
 35
3.3.4 System Level Requirements for Software Integration35

3.3.4.1 Software observability requirements..35
3.3.4.2 Interface requirements...37
3.3.4.3 Development constraints..38
3.3.4.4 System Level Integration of Software...38

3.3.5 System Requirements Review...39
3.4 PROCESS OUTPUTS...39

3.4.1 Requirements Baseline..39
3.4.2 Interface Requirements Document ...40
3.4.3 Design Justification File...40

SOFTWARE MANAGEMENT...41
4.1 INTRODUCTION..41
4.2 PROCESS INPUTS...41
4.3 ACTIVITIES..41

4.3.1 Planning ..41
4.3.2 Selection of the Software Life Cycle Model..42

4.3.2.1 Standard Waterfall Model ...44
4.3.2.2 Incremental delivery model ..45
4.3.2.3 Evolutionary development model...46

4.3.3 Technical Budget and Margin Management.....................................48
4.4 PROCESS OUTPUTS...48

SOFTWARE REQUIREMENTS ENGINEERING..50
5.1 INTRODUCTION..50
5.2 PROCESS INPUTS...51
5.3 ACTIVITIES..51

BSSC (2002)1 Issue 1.0 v
TABLE OF CONTENTS

5.3.1 Software Requirements Analysis..52

5.3.1.1 Establishing the software requirements...52
5.3.1.2 Identification of Software Requirements......................................58
5.3.1.3 Evaluation of software requirements...59
5.3.1.4 Software Requirements Review (SWRR) ..60

5.3.2 Software Architectural Design...61
5.3.2.1 Construction of the architectural model61
5.3.2.2 Definition of the Interfaces ..65
5.3.2.3 Software Integration Planning ...66
5.3.2.4 Evaluation of the Architecture..67
5.3.2.5 Preliminary Design Review (PDR)..67

5.3.3 Software Verification and Validation...68
5.3.3.1 Project level requirements..68
5.3.3.2 Tasks..69
5.3.3.3 Organisation ..69

5.4 PROCESS OUTPUTS...69
5.4.1 Technical Specification ..69
5.4.2 Design Justification File...70
5.4.3 Design Definition File..70
5.4.4 Interface Control Document ...70

SOFTWARE DESIGN ENGINEERING...71
6.1 INTRODUCTION..71
6.2 PROCESS INPUTS...71
6.3 ACTIVITIES..72

6.3.1 Design of Software Items ...72
6.3.1.1 Software Component Design ...72
6.3.1.2 Interface Design ...73
6.3.1.3 Drafting of Software User Manual ...74
6.3.1.4 Software Unit Test Planning...74
6.3.1.5 Software Integration Planning ...75
6.3.1.6 Evaluation of Design and Test Specifications75

6.3.2 Coding and Testing...76
6.3.2.1 Develop and document software units..77
6.3.2.2 Unit Testing ...78
6.3.2.3 Software User Manual Updates ...79
6.3.2.4 Integration Testing Requirements...79

vi BSSC (2002)1 Issue 1.0
 TABLE OF CONTENTS

6.3.2.5 Evaluation of Code and Test Results..79

6.3.3 Integration ...79
6.3.3.1 Integration Planning..80
6.3.3.2 Integration Testing...80
6.3.3.3 Software User Manual Update...80
6.3.3.4 Evaluation of the Integration Testing ..81

6.3.4 Validation Testing ..81
6.3.5 Critical Design Review ..82

6.4 PROCESS OUTPUTS...83
6.4.1 Design Definition File (DDF)..83

6.4.1.1 Software Components Design Documents..................................83
6.4.1.2 Software User Manual ...83

6.4.2 Technical Specification (TS)..84
6.4.2.1 Interface Control Document (ICD) ..84

6.4.3 Design Justification File (DJF)..84
6.4.3.1 Software Unit Test Plan ...84
6.4.3.2 Software Integration Plan..84
6.4.3.3 Software Validation against Technical Specification84

SOFTWARE VALIDATION AND ACCEPTANCE ..85
7.1 INTRODUCTION..85
7.2 PROCESS INPUTS...85

7.2.1 Requirements Baseline..85
7.2.2 Technical Specification ..86

7.2.2.1 Interface Control Document ..86
7.2.2.2 Software Requirements Specification ..86

7.2.3 Design Definition File..86
7.2.3.1 Software User Manual ...86

7.3 ACTIVITIES..86
7.3.1 Validation Testing against RB subset -1..86
7.3.2 Qualification Review...86
7.3.3 Delivery and Installat ion ..87
7.3.4 Validation Testing against RB subset -2..87
7.3.5 Validation Testing against RB...87
7.3.6 Software User Manual Updates...88
7.3.7 Acceptance Review ..88

7.4 PROCESS OUTPUTS...89

BSSC (2002)1 Issue 1.0 vii
TABLE OF CONTENTS

7.4.1 Design Definition File..89

7.4.1.1 Software Installation Plan ..89
7.4.1.2 Source Code Files, Build Code Files, Executable Code Files......89

7.4.2 Design Justification File...89
7.4.2.1 Preliminary Acceptance Test Specification..................................89
7.4.2.2 Preliminary Acceptance Test Results..89
7.4.2.3 Qualification Review Report ...89
7.4.2.4 Operational Acceptance Test Specification90
7.4.2.5 Operational Acceptance Test Results...90
7.4.2.6 Observation Reports..90
7.4.2.7 Compliance Matrix ..90
7.4.2.8 Acceptance Review Report...90

SOFTWARE OPERATIONS ENGINEERING..91
8.1 INTRODUCTION..91
8.2 PROCESS INPUTS...92
8.3 PROCESS ACTIVITIES...92

8.3.1 Operational Planning..93
8.3.1.1 Procedures for Anomaly Handling...95
8.3.1.2 Operational Testing Specifications ...95

8.3.2 Operational Testing...96
8.3.3 System Operation ..96
8.3.4 User Support...97

8.4 PROCESS OUTPUTS...98
8.4.1 Software Operations Plan..98

SOFTWARE MAINTENANCE..99
9.1 INTRODUCTION..99
9.2 PROCESS INPUTS...100
9.3 PROCESS ACTIVITIES...100

9.3.1 Problem and Modification Analysis...101
9.3.2 Modification Implementation ..103

9.3.2.1 Test Criteria...103
9.3.2.2 Implementation..104

9.3.3 Maintenance Review/Acceptance..104
9.3.4 Software Migration ..104
9.3.5 Software Retirement ...106

viii BSSC (2002)1 Issue 1.0
 TABLE OF CONTENTS

9.4 PROCESS OUTPUTS...107

9.4.1 Maintenance File (MF)..107
9.4.1.1 Problem Analysis Report..107
9.4.1.2 Software Release Note...107

9.4.2 Maintenance Plan ...108
9.4.3 Migration Plan ...108
9.4.4 Migration Justification ..108

SOFTWARE RE-USE ..110
10.1 INTRODUCTION..110
10.2 PROCESS INPUTS...111
10.3 ACTIVITIES..111

10.3.1 Developing Software for Intended Re-use...111
10.3.1.1 Customer Requirements...111
10.3.1.2 Supplier Requirements...112

10.3.2 Re-using Software from Other Projects..112
10.3.3 Use of Third Party COTS Products...113

10.4 PROCESS OUTPUTS...114
10.4.1 Requirements Baseline..114
10.4.2 Technical Specification ..115
10.4.3 Software Development Plan ..115
10.4.4 Design Justification File...115

MAN-MACHINE INTERFACES..117
11.1 INTRODUCTION..117
11.2 PROCESS INPUTS...117
11.3 PROCESS ACTIVITIES...118

11.3.1 Determine Prototyping Requirements...118
11.3.2 Determine MMI Standards..118

11.3.2.1 General Guidelines ...119
11.3.2.2 Information Display Guidelines..121

11.3.3 Supplier Consideration of MMI Aspects..122
11.4 PROCESS OUTPUTS...123

11.4.1 Requirements Baseline..123
11.4.2 Technical Specification ..123
11.4.3 Design Justification File...123

APPENDIX A GLOSSARY..1

BSSC (2002)1 Issue 1.0 ix

DEFINITIONS ...1

Operational Software..1
Non-operational Software..1

ABBREVIATED TERMS ...1

APPENDIX B REFERENCES..1

APPENDIX C DOCUMENT LIFECYCLES..1

x BSSC (2002)1 Issue 1.0
 PREFACE

PREFACE

This Guide comprises three parts: A, B and C.

This part, Part A, describes the software engineering activities for
space system ground segments, and is designed to be applied in all ground
segment software engineering projects undertaken by the European Space
Agency (ESA). In the past, ground segment software development projects
undertaken by ESA and, especially, the European Space Operations Centre
(ESOC) have been undertaken according to the ESA Software Engineering
Standards, ESA PSS-05-0. ESA now applies the European Co-operation for
Space Standardisation (ECSS) E-40 Space Engineering: Software standard for
all space software projects. Requirements relating to ground segment
software are also specified in the ECSS E-70 Space Engineering: Ground
Systems and Operations standard.

This part of the guide describes how to implement the requirements of
ECSS-E-40 and ECSS-E-70 on ground segment software projects undertaken
by the various parts of ESA. The guide also:

• carries over working practices from ESA PSS-05 and ESA Quality
Management System, where they fully implement the requirements of
ECSS-E-40 and the other standards

• reflects the lessons learnt in the application of ESA PSS-05.

The PSS-05 standards covered the development and management of
software development projects. ECSS-E-40 does not contain project
management and configuration management practices, which are defined
in the ECSS-M series of standards, nor quality assurance standards, which are
defined in ECSS-Q series of standards. Part B of this guide addresses these
requirements.

A BSSC Working Group prepared the first draft of Part A of this Guide.
The Working Group comprised Yves Doat, Gottlob Gienger, Gianpiero di
Girolamo, Angela Head, Michael Jones, Alfio Mantineo, and Eric Perdrix, all
from ESA/ESOC with Serge Valera from ESA/ESTEC. Richard Jack was editor
and researcher. The Guide was reviewed and revised by the following BSSC

BSSC (2002)1 Issue 1.0 xi
PREFACE

Members: Michael Jones (co-chairman) Uffe Mortensen (co-chairman),
Alessandro Ciarlo, Daniel de Pablo and Lothar Winzer, assisted by Eduardo
Gomez. The BSSC wishes to thank John Brinkworth and John Barcroft for
editing the final version.

Requests for clarifications, change proposals or any other comment
concerning this guide should be addressed to:

BSSC/ESOC Secretariat BSSC/ESTEC Secretariat
Attention of Mr M Jones Attention of Mr U Mortensen
ESOC ESTEC
Robert Bosch Strasse 5 Postbus 299
D-64293 Darmstadt NL-2200 AG Noordwijk

Germany The Netherlands

michael.jones@esa.int uffe.mortensen@esa.int

BSSC (2002)1 Issue 1.0 1
INTRODUCTION

CHAPTER 1

INTRODUCTION

1.1 PURPOSE

This Software Engineering and Management Guide
concerns the development and maintenance of ground segment
software. This guide covers all aspects of software development for
ground segment software including requirements definition,
design, production, verification and validation, transfer, operations
and maintenance.

This guide is a unified and complete description of how to
implement the requirements of ECSS-E-40, ECSS-E-70, ECSS-Q-80 and
the ECSS-M standards as concerns ground segment software. The
guide also:

• carries over working practices from ESA PSS-05 [Ref 24, 25] and
ESA Quality Management System, where they fully implement
the requirements of ECSS-E-40 and the other standards

• reflects the lessons learnt in the application of ESA PSS-05.

The guide complies with the requirements of ECSS-E-40,
Software [Ref. 11], and ECSS-Q-80, Software Product Assurance
[Ref. 10], which are themselves based on Information Technology
Software Life Cycle Processes 12207:1995 [Ref. 1]. As the software
developed according to this guide is specifically used in ground
segments, the guide is also compliant with the applicable
requirements of ECSS E-70, Ground Systems and Operations [Ref.
13].

Managers, software engineers and assurance specialists
applying this guide are thus conformant with the relevant ECSS
standards.

2 BSSC (2002)1 Issue 1.0
 INTRODUCTION

1.2 OVERVIEW

Part A provides an overview of the software life cycle
process, in accordance with the E-40 and E-70 standards, and their
application in the lifecycle of software for ground systems. It also
gives advice on applying this guide to a particular project.

Part B of the Guide covers the practices to implement
effective management of the development, operation and
maintenance of ground segment software. The majority of these
practices are defined in the ECSS Management [Ref. 3 to 9] and
ECSS Product Assurance [Ref. 10] series of documents, rather than
the ECSS E-40 and E-70 standards.

Part C provides proposed templates for documents.

1.3 TAILORING THE GUIDE

This guide describes the software engineering processes to
be applied to all deliverable software products developed for
ground segments. The processes are characterised in terms of
activities and tasks. The tasks contain the requirements to be
applied. As described in chapter 2.2, the tasks are organised as
mandatory practices, recommended practices and guidelines.

The tailoring process is the deletion of non-applicable
processes, activities and tasks [Ref. 1]. The addition of unique or
special processes, activities or tasks is permitted, as specified in the
contract. Tailoring may also involve the deletion of outputs or the
limitation of applicability to certain parts of the system. The existing
requirements may be refined or specified. Tailoring guidelines (for
informative purposes only) are provided in appendix C of [Ref. 11].

When different procurements are used, each software
product can be procured using different tailoring approaches.
Some of the criteria that can be considered are:

• Overall space project risk (see part B)

BSSC (2002)1 Issue 1.0 3
INTRODUCTION

• Characteristics of product, equipment or project such as

criticality, longevity, size, operational or non-operational
status (see part B), real-time constraints and level of
definition of the requirements

• Cost.

The tailoring process is explained in Part B of this Guide
section 2.3.2.

4 BSSC (2002)1 Issue 1.0
 SOFTWARE LIFE CYCLE PROCESSES FOR GROUND SEGMENT

CHAPTER 2

SOFTWARE LIFE CYCLE PROCESSES FOR GROUND
SEGMENT

2.1 INTRODUCTION

The chapter contains a brief description of the scope of
ground systems and explains the concept of decomposing the
ground segment to its lower level components. This seeks to
establish the relationship of the software development to the
overall ground segment development.

This chapter introduces the concept of applying processes
to develop ground segment software.

2.2 SPACE PROJECT ENGINEERING

The purpose of a space project is to deliver to a customer a
system that includes one or more elements intended for operation
in space [Ref. 15]. The engineering process, one of five main
domains within space projects, is responsible for the definition of the
system, verification that the customer's technical requirements are
achieved, and compliance with the applicable project constraints.

A space system is composed of three principal elements:

• Space segment

• Launch service segment

• Ground segment

A specific space system consists of a set of interdependent
elements put together to achieve a given objective. The physical
form may include any combination of hardware, software and
personnel.

This Guide considers only the requirements for the
development and maintenance of software for ground segments.

BSSC (2002)1 Issue 1.0 5
SOFTWARE LIFE CYCLE PROCESSES FOR GROUND SEGMENT

2.3 GROUND SEGMENT SYSTEMS

A brief summary of the scope of the ground segment is
presented. A more detailed description of the scope of the
engineering activities for the ground segment may be found in
ECSS E-00 [Ref. 15] and ECSS E-70 [Ref. 13].

Within a Space System, Mission Operations comprises that
subset of mission engineering activities required to operate the
space segment. These activities are broadly flight operations,
ground operations and logistics engineering. Mission Operations
implements the mission in accordance with the stated, implied or
re-defined mission objectives in terms of providing plans and
services, conducting experiments, producing, prov iding and
distributing mission products.

In this context the domain of ECSS-E-70 [Ref. 13] covers the
Ground Segment, i.e. the ground facilities and personnel involved in
the preparation and/or execution of Mission Operations for
unmanned missions. In addition, it also considers those aspects of
the space segment system of relevance to mission operations. The
ground segment can be seen as composed of two main
components:

• Ground Operations Organisations, comprising the human
resources performing the various operational tasks and
preparing the mission operations data (e.g. procedures,
documentation, mission parameters, mission description data,
etc.).

• Ground Segments, consisting of the major ground infrastructure
elements that are used to support the preparation activities
leading up to mission operations, the conduct of operations
themselves and all post -operational activities.

The scope of this guide is the development of software for
the Ground Segments. The Ground Segment consists of a number
of subsystems [Ref. 15]. A subsystem consists of a set of
interdependent components constituted to achieve a given

6 BSSC (2002)1 Issue 1.0
 SOFTWARE LIFE CYCLE PROCESSES FOR GROUND SEGMENT

objective by performing a specified function. A subsystem does not
provide sufficient functionality to satisfy the customer's needs.

A Ground Segment normally consists of, but is not restricted
to, the following main subsystems:

• The Mission Control System (MCS). This is the system responsible
for control of the mission after launch

• The Ground Station System (GSTS). This includes the antenna,
receivers, ground converter, communication software, etc.

• The Ground Communication Sub-net (GCS). This is the
communications network linking the ground stations and
control centres used in any given mission.

• On-Board Software Validation Facility (SVF), used for
developing, testing and maintenance of on-board software

The MCS may contain:

• Operations Control System (OCS),

• Payload Control System (PCS) and

• Mission Exploitation System (MES),

• Simulators, including simulators for training and testing

In addition, Electrical Ground Support Equipment (EGSE) will be
needed for the check-out of spacecraft or payloads before launch.

With the exception of Simulators and the SVF, these are
further defined in ECSS-E-70 [Ref. 13].

Those systems may be grouped together to constitute
facilities. There is a direct correspondence between ground systems
and operations space organisations. The combination of an
operations organisation and its corresponding supporting facility
constitutes a Ground Segment Entity. Classical examples of entities
are Control Centres, from which the elements of an operations
organisation control an element of the mission using the related
facilities. Each such entity may contain a number of software

BSSC (2002)1 Issue 1.0 7
SOFTWARE LIFE CYCLE PROCESSES FOR GROUND SEGMENT

products in the sense of ECSS-E-40 [Ref. 11]. For example an
Operations Control System could contain the following software
products: control system kernel, mission planning system, file transfer
system, data distribution system. This guide is concerned with the
software engineering of the Ground systems or the software
products contained therein. It is not concerned with the ground
operations organisations, but it is clear that their needs will have a
profound effect on the software products.

Although they are ground segment elements, the EGSE and
the SVF are usually procured along with the space segment. Their
development processes are rather closely coupled to the space
segment development phases rather than to the ground segment
ones discussed in section 2.8.

In general, development of the ground segment elements
will be delayed compared to that of the space segment elements.
This is because of the design dependencies: for example the
training simulator design cannot be completed until the design of
the spacecraft elements it is simulating is sufficiently well known.
Since the ground segment is used for operating the space segment,
the main constraint on its development is that of readiness for
operations. This normally means that the ground segment will be
available for operations some time before launch. However, in some
cases the development software engineering processes may
continue after launch, e.g. for a deep space mission for which the
mission operations takes place at the end of a long “cruise phase”
(~years), it may be decided to develop mission operations software
after launch.

2.4 LEVELS OF DECOMPOSITION

Each of the ground segment subsystems is composed of a
number of lower-level components. The component is referred to as
an equipment when it consists of a hardware element (which may
include embedded software) and called a software product when

8 BSSC (2002)1 Issue 1.0
 SOFTWARE LIFE CYCLE PROCESSES FOR GROUND SEGMENT

it comprises software only. A ground segment subsystem may
consist of any number of equipments and software products.

The ground segment may be implemented as a single
procurement, but more usually several separate procurements are
used for the separate software products or equipment of which it is
composed.

The levels of decomposition are fully defined in ECSS-E-00
[Ref. 15]. They are summarised, in Table 2.1, in terms of the software
engineering terminology used in E-40 [Ref. 11].

BSSC (2002)1 Issue 1.0 9
SOFTWARE LIFE CYCLE PROCESSES FOR GROUND SEGMENT

Level of
Decomposition

Definition

Software
product

A software product, an item comprising
software only, is designed and built to achieve a
specific purpose.

Software
Component

A software product is composed of
components. A component consists of two or
more software units joined together to form an
item with defined characteristics but which
does not by itself achieve a specific purpose.

Software Unit The lowest level of decomposition. A software
unit is any software entity that is discrete and
identifiable with respect to compiling,
combining with other items and loading.

Table 2.1 Levels of Decomposition

This Guide describes the processes required to develop a
software product. In doing so, it covers some activities relating to
the integration of software product to the ground segment or
overall space system.

The level of integration required will be dependent on the
project requirements. A particular project may require the
development of a single software product or it may involve the
development of a number of software products and equipment.

Particular care should be taken to ensure that the boundary
of the software product is clear and that the requirements for
integration into the wider system are addressed.

10 BSSC (2002)1 Issue 1.0
 SOFTWARE LIFE CYCLE PROCESSES FOR GROUND SEGMENT

2.5 SOFTWARE REQUIREMENTS FOR GROUND SYSTEMS

ECSS-E-70, Ground Systems and Operations [Ref. 13]
standard, provides a number of specific requirements for software
products for ground systems.

Software products often constitute critical elements of
ground segment in terms of cost, schedule and technical risk. A
particular aspect for consideration [Ref. 13] is to maximise re-use of
functionality across missions, since in most cases only a small part of
the total system needs to be modified to accommodate the
mission specific characteristics.

The following general aspects, listed in Table 2.2, should be
considered to ensure a cost -effective design, implementation
operation and maintenance of ground software, based on the
requirements of ECSS-E-70 [Ref. 13]. This Guide provides additional
information on how these general requirements are addressed
within the ECSS-E-40 [Ref.11].

Aspect Meaning

Configurability Primarily to be modular and parameter
driven to accommodate evolution and to
enable re-use across missions. Modularity
allows the replacement of parts with
different components

Vendor
independence

With respect to computer platform and
vendor

Scalability To facilitate expansion of the hardware,
software configuration of the system
without major re-design

BSSC (2002)1 Issue 1.0 11
SOFTWARE LIFE CYCLE PROCESSES FOR GROUND SEGMENT

Aspect Meaning

Portability To reduce cost of migrating the system to a
new computer platform and operating
system in order to cope with the
obsolescence of hardware and software
(e.g. in case of long duration missions or
long-lived infrastructure software)

Openness Refers to the capability to interface with
other (new) systems or to add functionality
without major re-design.

Re-usability To permit re-usability across missions i.e.
mission customisation should not involve
massive modifications

Standards Whenever possible, widely used (often de-
facto) standards should be utilised

COTS products Whenever cost -effective and technically
suitable, commercial off-the-shelf (COTS)
should be used.

open source
software

Open Source software products have the
advantage that the source is available,
can be changed or adapted and removed
dependency on the product release policy
(e.g. as concerns platform migration) of
COTS vendors.

Table 2.2 ECSS-E-70 Requirements for Ground Systems Software

It should be noted that the ground system operation may
include the following aspects of software development related to
the space segment:

12 BSSC (2002)1 Issue 1.0
 SOFTWARE LIFE CYCLE PROCESSES FOR GROUND SEGMENT

• On-board software management

• On-board software maintenance

 The software development processes defined in this guide
also cover the engineering of On-board Software Management
software. On-board software maintenance, to maintain the space
segment on-board software, shall be performed in accordance
with the requirements of space segment software.

2.6 PROCESSES, ACTIVITIES AND TASKS

A process is a set of interrelated activities that transform
inputs into outputs [Ref. 1]. This guide describes those processes
that transform initial customer requirements into a software
product.

Each process is divided into a set of activities. The activities
describe the main operations to be carried out in a process. Each
activity is further divided into a set of tasks. The tasks are the
requirements that are normally applied to all projects developing
ground segment software. These requirements are defined in the
ECSS-E-40 [Ref. 11] but they can be tailored for the needs of a
specific project, as discussed in chapter 3.

2.7 THE SOFTWARE LIFE CYCLE PROCESSES

The processes for developing ground segment software are:

• Systems Engineering for Software

• Software Requirements Engineering

• Software Design Engineering

• Software Verification and Validation

These processes cover the lifecycle of a ground segment
software product from the initial customer requirements through to

BSSC (2002)1 Issue 1.0 13
SOFTWARE LIFE CYCLE PROCESSES FOR GROUND SEGMENT

implementation, installation and acceptance of the software
product. Once the software product has been developed, it is
required to be

• operated (Software Operations Engineering)

• maintained (Software Maintenance)

throughout its useful life.

The System Engineering process may identify a number of
software products to be developed, as described in section 2.4.
Each software product will be developed according to the above
processes but these individual products will require a process of
integration and validation to form the system. The operation of the
software products may be dependent on the operational aspects
of the overall system.

2.7.1 System Engineering for Software

The System Engineering for Software process is the
responsibility of the customer. The customer is responsible for the
delivery of a system in which the developed software will be
integrated. In practice, however, the supplier may carry out many
of the key activities and tasks on behalf of the customer.

In the majority of ground segment cases, a software
product is in fact part of a larger ground segment system or
element of that system. The requirements for system engineering
are fully specified in [Ref. 13]. The System Engineering for Software
process is restricted to those aspects of the system engineering
process that require the introduction of additional requirements
specific to software development. The System Engineering for
Software process ensures that the customer requirements for
software are complete, unambiguous and properly express the
customer's needs.

The documentation of the system level requirements is a
prerequisite to the requirements engineering for the software.

14 BSSC (2002)1 Issue 1.0
 SOFTWARE LIFE CYCLE PROCESSES FOR GROUND SEGMENT

This process ensures that the system requirements for

software are fully specified and documented. Activities from the
software life cycle processes may be required during system
requirements analysis, for example the technique of constructing
software prototypes is often used to clarify or help the
understanding of system requirements.

This process also establishes the top-level partitioning of the
system between the various elements e.g. hardware, software and
manual operations. All system requirements are allocated to
specific items. The systems requirements allocated to software are
documented in the requirements baseline. The specific interface
requirements are documented in the Interface Requirement
Document.

2.7.2 Software Requirements Engineering

This process is concerned with the establishment of the
requirements of the software product, along with the elaboration
of the interface requirements. Each of the software products
identified in the System Engineering process will undergo Software
Requirements Engineering. The Software Requirements Engineering
process is the responsibility of the supplier.

Software Requirements Engineering is the process that
bridges the gap between system level software partitioning and
the software design process. Requirements analysis enables the
specification of software function and performance, the definition
of the software's interface with other software or other parts of the
system. It will also establish the design constraints that the software
must meet. The process also provides the representation of the
information and function that can be translated into data,
architectural and detailed design.

The requirements for each of the software products are
normally described in a technical specification and an interface
control document. The technical specification contains a precise
and coherent definition of functional and performance

BSSC (2002)1 Issue 1.0 15
SOFTWARE LIFE CYCLE PROCESSES FOR GROUND SEGMENT

requirements. The interface control document contains the
specification for interact ion with external systems, which may be
other software products or other systems.

During this process, cost, schedule and implementation
plans are written. These are addressed in Part B of this Guide.

All significant trade-offs, feasibility analysis, make/buy
decisions and supporting technical assessments are documented in
the design justification file.

This process also includes preparing the architectural design
of the software product, i.e. top-level structure and the software
components meeting the software requirements. These are
described in the design definition file. The process will also identify
the top-level design for the external interfaces (i.e. to other
software or systems) and internal interfaces (i.e. between the
software components of the software product). These are
described in the interface control document.

2.7.3 Software Design Engineering

Software Design Engineering activities includes the detailed
design and the coding of the software product. The process is also
concerned with the unit, integration and system testing activities
for each software product. Software Design Engineering is the
responsibility of the supplier.

This process produces the design for each element in the
software product tree. All elements of the software design are
documented, in the design definition file (DDF), including the source
code.

The documentation produced should also include
description of the rationale for design decisions and of the analysis
and test approach to show that the design meets the
requirements. This will be held in the design justification file (DJF).

16 BSSC (2002)1 Issue 1.0
 SOFTWARE LIFE CYCLE PROCESSES FOR GROUND SEGMENT

For large software developments, in which the software has

been partitioned into smaller subsystems, the software design
engineering process will also include the integration of the
individual subsystems into the complete software system.

2.7.4 Software Verification and Validation

Verification [Ref. 1] determines whether the outputs of an
activity fulfil the requirements or conditions imposed on them in the
previous activities. Validation determines whether the
requirements, and the final as-built software product, fulfil their
specific intended use. In essence, this process confirms that the
customer's needs are properly expressed as requirements, that all
requirements are met and that the design constraints are
respected.

The Software Verification and Validation process runs
concurrently with the systems engineering, requirements
engineering and design engineering processes and activities within
the process are included in the descriptions of these processes. At
the end of the Software Design Engineering process, however,
specific verification and validation activities are undertaken. These
activities, described in the Software Validation and Acceptance
process, include the transfer of the software to the customer and
the subsequent acceptance of the software by the customer.
Acceptance requires the formal evaluation of the software
product in its operational environment, which is carried out after
the software has been transferred.

2.7.5 Software Operations Engineering

The Software Operations process commences after the
acceptance of the software product in its operational
environment. Since the software product forms an integral part of
the ground segment, the phasing and management of operat ions
will be determined by the system level needs. The Software
Operations Engineering process is not directly connected to the

BSSC (2002)1 Issue 1.0 17
SOFTWARE LIFE CYCLE PROCESSES FOR GROUND SEGMENT

overall mission phases but rather is governed by the need to
operate the software product at a given time.

2.7.6 Software Maintenance

This process is concerned with the controlled modifications
to code and associated documentation due to a problem or the
need for improvement or adaptation. The process ends with the
retirement of the software product.

2.8 GROUND SEGMENT SYSTEM ENGINEERING

2.8.1 Ground Segment System Engineering Phases

In ECSS-E-70 [Ref. 19], ground segment engineering is
partitioned into phases A to F that include the activities described
later in this section. The ground segment life cycle phases are not
necessarily concurrent with those of the space segment, although
there is extensive interaction between the two. Furthermore, other
project life cycle models may be used for the development of
individual system elements – this section focuses particularly on the
implications for elements containing software.

For each ground segment phase, ECSS-E-70 [Ref. 19]
identifies the main activities and their inputs and outputs, and the
major review(s). The list of activities, major reviews (formal phase
transitions) and products are summarised in various tables and,
whenever applicable, reference to the relevant Document
Requirements Definition (DRD) is also made.

A brief overview of the Ground Segment life cycle phases
activities is given below:

18 BSSC (2002)1 Issue 1.0
 SOFTWARE LIFE CYCLE PROCESSES FOR GROUND SEGMENT

• Feasibility Studies and Conceptual Design (Phase 0/A): During

this phase, the requests initially expressed by the Space System
Customer (SSC) are analysed in order to identify and
characterise the ground segment, in terms of operational
feasibility and needs, expected performance and RAMS
objectives (Reliability, Availability, Maintainability, and Safety).

• Preliminary Design (Phase B): This phase is to achieve a precise
definition of the ground segment baseline. During the
preliminary design phase the ground segment is decomposed
into its main elements.

• Design (Phase C): This phase is to complete the design of the
ground segment to element level and to start implementation.
In addition, this phase also includes the definition of the
operations organisation and the start of production of mission
operations data (operational procedures, database) and
detailed mission analysis.

• Production (Phase D): This phase is to procure all ground
segment facilities and elements and to integrate them into an
operational ground segment that is ready to support the in-
orbit operations and exploitation of the space segment. It is
composed of three main sub-phases that correspond to:

1. Production/procurement,

2. Technical verification and validation, the integration and
technical validation of its major constituent elements, the
main objective of which is to confirm the compliance of the
ground segment with the specifications and its compatibility
with the space segment and the external entities

3. Operational validation, complementing the technical
validation by involving the operations organisation (i.e.
personnel and procedures), in order to verify that the overall
ground segment is able to support the mission. Acceptance,
which requires the formal evaluation of the software product

BSSC (2002)1 Issue 1.0 19
SOFTWARE LIFE CYCLE PROCESSES FOR GROUND SEGMENT

in its operational environment, is carried out during
operational validation.

• In-orbit Operations (Phase E): This phase is to operate and
exploit the mission during all in-orbit operations. For this it is
necessary to maintain the ground segment in accordance with
the maintenance plans and to correct any satellite anomalies
that may occur.

• Mission Termination (Phase F): During this phase the space
segment is withdrawn from service, after preparation and
planning in liaison with the space segment customer and
according to international regulations. This may include
transferring its constituting spacecraft to another orbit.

20 BSSC (2002)1 Issue 1.0
 SOFTWARE LIFE CYCLE PROCESSES FOR GROUND SEGMENT

2.8.2 Mapping ECSS-E-40 onto GS System Engineering Phases

The mapping of Engineering phases to the Ground Segment
Software development lifecycle is individually defined for each
project and is independent of the Space Segment software
lifecycle mapping. Figure 2.1 shows a mapping of ECSS-E-40
Software Development Processes [Ref. 11] to ECSS-E-70 Ground
Segment Life Cycle Phases [Ref. 13]. The mapping introduces an
additional review, the Software Requirements Review (SWRR). This is
permitted by ECSS-E-40, since ECSS-E-40 prescribes the minimal set
of reviews and does not forbid the insertion of intermediate reviews.

Requirements
Engineering

Design
Engineering

System Engineering

Validation
and Acceptance

SRR PDR QR AR

ECSS-E-70
ACTIVITIES

Identify Characteristics,
Constraints, Concepts.
Assess feasibility.
(G/S)
perspective

GSRR GSPDR
GSTVVRR

GSCDR

Define requirements
on G/S& G/S
Baseline

Complete G/S
design to element
level & start
implementation

Procure G/S
facilities &
elements

Integrate, Verify &
Validate G/S
systems (includes
preliminary validation
of mission data

Train people
& Validate full G/S
(i.e. includes people
and mission data

ECSS-E-70
REVIEWS

GSTVVR

OVRR

SWRR

SW Requirements
Analysis

Top -Level SW
Architectural
Design

CDR

A B C D

E-40
Processes

E-40 Reviews

Customer Supplier Customer

ORR

Customer Supplier Customer
Or alternatively:

Customer/
Supplier
Resonsibilities

BSSC (2002)1 Issue 1.0 21
SOFTWARE LIFE CYCLE PROCESSES FOR GROUND SEGMENT

Figure 2.1 Mapping of ECSS-E-40 (Phases A-D) to ECSS-E-70

Figure 2.2 shows a mapping for the remaining phases.

Figure 2.2: Mapping of ECSS-E-40 to ECSS-E-70 (Phases E - F)

E

IN-ORBIT OPERATIONS

LEOP & COMMISSIONING ROUTINE OPERATIONS

IO QR IO QRs

F

MISSION
TERMINATION

MCOR

Acquire mission
orbit/config.+

Qualify space segment

Operate & Exploit
 Mission
In-orbit

Space &
Ground Segment

 Disposal

SOFTWARE OPERATONS ENGINEERING

SOFTWARE MAINTENANCE ENGINEERING RETIREMENT

Note also that in figure 2.1, operational validation is, in
effect, done at system level (see Chapter 9).

Figure 2.1 also shows separation of responsibilities between
customer and supplier. This need not imply a single supplier. For
example requirements engineering and design engineering may be
carried out by different suppliers (although this has the
disadvantage that there will be more requirements interpretation
problems by the supplier doing the design engineering and possibly
less cost awareness on the part of the supplier preparing the
requirements).

22 BSSC (2002)1 Issue 1.0
 SOFTWARE LIFE CYCLE PROCESSES FOR GROUND SEGMENT

2.9 SUPPORTING THE SOFTWARE ENGINEERING PROCESS

This Guide covers the engineering processes required to
develop ground segment software products, in accordance with
the E-40 standard [Ref. 11]. A number of supporting activities to
assist in the management and product assurance of the software
engineering process are defined in the ECSS-M [Ref. 3 to 9] and
ECSS-Q [Ref. 10] series of standards.

Part B of this Guide covers the following aspects of
management of the software development.

2.9.1 Documentation

The purpose of the documentation process is to record
information produced by a lifecycle process. This process is
concerned with the planning, production, distribution and
maintenance of all documentation from the development project.
The document process takes account of the requirements of ECSS-
M-50 [Ref. 8].

2.9.2 Configuration Management

The purpose of the Configuration Management process
[Ref. 1] is to apply administrative and technical control throughout
the software lifecycle to:

• identify, define and baseline software items in a system

• control modifications and releases of the items

• record and report the status of the items and modification
requests

• ensure the completeness, consistency and correctness of the
items

• storage, handling and delivery of the items.

The configuration management aspects for the internal
control of the software product development will be compatible
with the requirements of ECSS-M-40 [Ref.7]. These aspects will also

BSSC (2002)1 Issue 1.0 23
SOFTWARE LIFE CYCLE PROCESSES FOR GROUND SEGMENT

be used to assist the Software Maintenance process, described in
Chapter 10.

The configuration management process is also important to
the management of the interfaces to the other system
components. Interface management procedures shall be defined
in accordance with ECSS-M-40 requirements. The aim is to define
procedures that guarantee the consistency of the system
interfaces.

The interface management procedures for a particular
project are normally documented in the customer requirements
baseline (RB). Where appropriate, specific configuration
management documentation may be produced.

2.9.3 Software Product Assurance

The purpose of the Software Product Assurance process is to
provide adequate assurance that the software product and
processes in the project lifecycle conform to their specified
requirements and adhere to the established plans. Quality
Assurance may be internal or external depending on whether
evidence of product or process quality is demonstrated to the
management of the supplier or the customer.

The guidance in this section shall be primarily derived from
the ECSS-Q series of standards, in particular ECSS-Q-80 [Ref. 10].

2.9.4 Software Project Management

The ECSS-M standards define the requirements to be
applied to the management of space projects. Although many of
the practices will be directly applicable to ground segment
software projects, the standards will be tailored to suit the
particular nature of software development.

24 BSSC (2002)1 Issue 1.0
 SOFTWARE LIFE CYCLE PROCESSES FOR GROUND SEGMENT

This page is intentionally left blank

BSSC (2002)1 Issue 1.0 25
SYSTEM ENGINEERING FOR SOFTWARE

CHAPTER 3

SYSTEM ENGINEERING FOR SOFTWARE

3.1 INTRODUCTION

The System Engineering for Software process may be called
the ‘problem definition’ process. The purpose of the process is to
determine the system level aspects of the ground segment that
can have a bearing on the software development.

The definition of the system requirements shall be the
responsibility of the customer. The expertise of the software
engineers, hardware engineers and operations personnel should be
used to help refine and review the system requirements.

An output of the process is contained within the
requirements baseline (RB). The RB comprises a number of distinct
components, as described in Appendix A, but will be referred to as
a single document for convenience. The RB will contain the
customer requirements. The customer requirements are a critical
item for the whole software project because they define the basis
upon which the software is accepted.

The other principal output of this process is the Interface
Requirements Document (IRD), which specifies the external
interfaces for the overall system and the interfaces between the
constituent parts of the system. The IRD is conceptually part of the
RB but will normally be held as a separate chapter or volume, as
appropriate.

The system engineering process terminates with the formal
customer approval of the requirements baseline by the System
Requirements Review (SRR).

26 BSSC (2002)1 Issue 1.0
 SYSTEM ENGINEERING FOR SOFTWARE

3.2 PROCESS INPUTS

There may be no formal inputs to this process, depending on
the definition of the system. In the case where the system under
development is part of a higher level system, there is likely to be
formal specification describing the key requirements of the
components and their interfaces. In the case where no higher level
specification exists, the results of interviews, surveys, studies and
prototyping exercises are often helpful in formulating the system
requirements.

3.3 ACTIVITIES

The main activity of the system engineering process is to
capture the customer requirements and document them in the RB.
The scope of the system has to be established and the interfaces
with the external systems identified. The nature of the system will be
dictated by its level in the product hierarchy, as discussed in
chapter 2. At the higher levels, the system engineering process will
be concerned with the partitioning of functionality between
hardware, software and manual operations. At the lower levels of
the partitioning, the system engineering process may be concerned
with the partitioning and interfacing of purely software
components.

Ground segment software is often operated by operations
personnel; it follows that the requirements baseline will reflect both
system requirements and user requirements. For example the RB for
a mission control system will contain requirements relating to
(interfaces to) the other system elements (e.g. the ground stations
and the communications) and to the operators and spacecraft
engineers that use it

The System Engineering process is fully described in ECSS-E-00
[Ref. 15], while the details of the system engineering discipline are
described in ECSS-E-10 [Ref. 16]. The purpose of this guide is not to
explain all aspects of systems engineering but rather to provide

BSSC (2002)1 Issue 1.0 27
SYSTEM ENGINEERING FOR SOFTWARE

guidance on the software aspects of the Systems Engineering
process. When dealing with software components, the System
Engineering process is composed of the following activities:

• System Requirements Analysis

• System Partitioning

• System Level Requirements for Software Verification and
Validation

• System Level Requirements for Integration of Software

• System Requirements Review

3.3.1 System Requirements Analysis

The key aspects of the System Requirements Analysis activity
are to identify the customer-defined objectives and goals for the
product and then proceed to model these requirements in a
manner that allocates them to a set of engineering components -
software, hardware and people.

Once function, performance, constraints and interfaces are
bounded, the next task is allocat ion, assigning functions to one or
more engineering components.

3.3.1.1 System requirements specification

In order to document the systems requirements, it is
necessary to analyse the specific intended use of the system.

The key aspect of this task is to establish a set of overall
objectives, which the system must meet. These should not be
expressed in terms of the systems functionality but rather should
define why the system is being procured for a particular
environment.

From the objectives of the system, the requirements of the
system shall be derived. The following types of requirements are
normally addressed:

28 BSSC (2002)1 Issue 1.0
 SYSTEM ENGINEERING FOR SOFTWARE

3.3.1.1.1 Functional Capability requirements

The system shall be defined in terms of the functional
capabilities it supplies to its users. Functional capability
requirements describe 'what' the users want to do. This requirement
addresses the capability of the software to provide functions which
meet stated and implied needs when the software is used under
specified conditions.

A functional capability requirement should define an
operation, or sequence of related operations, that the system will
be able to perform. The functional capability requirements should
be expressed quantitatively in terms of:

• Capacity - how much of a capability requirement is needed at
a given time

• Speed - how fast the complete operation, or sequence of
operations, is to be performed

• Accuracy - the difference between what is intended and what
happens when an operation is carried out

3.3.1.1.2 Non-functional requirements

The non-functional system properties, such as reliability and
safety, shall be defined. Non-functional requirements place
restrictions on how the requirements are to be met. There are a
number of ways of expressing non-functional requirements but
normally the following attributes listed in Table 3.1 would be
considered.

BSSC (2002)1 Issue 1.0 29
SYSTEM ENGINEERING FOR SOFTWARE

Attribute Meaning

Usability How the system will run and how it will
communicate with human operators.

Efficiency The upper limits on physical resources such as
processing power, main memory, disk space, etc.

Maintainability The ease by which faults can be corrected and
software can be adapted to meet new
requirements.

Portability The ease by which a system can be moved from
one environment to another

Reliability The acceptable mean time interval between
failures of the software, averaged over a
significant time period.

Security The capability of the system against threats to its
confidentiality, integrity and availability

Safety The ability to deal with potential problems such
as hardware or software faults

Table 3.1 Non-functional characteristics

3.3.1.1.3 Excluded characteristics

The principal objective of the system engineering process is
to specify what the system should do, but it is sometimes necessary
to specify what the system must not do. Where ever possible, these
excluded characteristics should be expressed in terms of capability
or non-functional requirements. For example, the system may be
developed to operate on a number of different platforms but a
specific platform may be excluded. As another example, a system
may be developed against a particular standard but certain
elements of that standard may not be addressed.

All such excluded characteristics shall be explicitly stated.

30 BSSC (2002)1 Issue 1.0
 SYSTEM ENGINEERING FOR SOFTWARE

3.3.1.1.4 Interface requirements

All external interfaces to the system shall be defined. An
interface is a shared boundary between two systems and it may be
defined in terms of what is exchanged across the boundary.
External interfaces state how interactions with other systems or
system components must be done.

The interface requirements are documented as part of the
requirements baseline. They are normally documented in an
Interface Requirements Document, which is part of the RB.

3.3.1.1.5 Software engineering methods and tools

All software development projects shall follow the process
model specified in this guide but, where appropriate, defined
methods and coding standards may be specified for the activities
and tasks within the process model.

In the case where the customer requires specific software
engineering methods and tools to be applied during the
development, these shall be defined in the requirements baseline.

3.3.1.2 Criticality Analysis

The overall safety and reliability requirements for the system
shall be defined. All critical functional aspects of the software shall
be identified and, without introducing undesirable software
complexity, the number of critical components shall be minimised.
The results of the criticality analysis shall be documented in the
requirements baseline.

BSSC (2002)1 Issue 1.0 31
SYSTEM ENGINEERING FOR SOFTWARE

Criticality for ground software can be considered in the

following categories:

1. Software which could cause danger to a spacecraft pre-
launch. This applies to EGSE software and to mission software
used in System Validation Tests and other test activities with the
spacecraft.

2. Software used to control the launcher: this software may be
safety critical.

3. Software that could endanger a mission if it does not work
correctly, e.g. if it produces incorrect results. This software could
also be safety critical (e.g. if used in manned missions).

4. Software that needs to be working correctly during important
or critical operations.

Appropriate use should be made of criticality analysis
methods, such as:

• Software Failure Modes, Effects and Criticality Analysis (software
FMECA)

• Software Common Mode Failure Analysis (Software CFMA)

• Software Fault Tree Analysis (Software FTA)

The supplier shall define and apply measures to assure the
reliability of critical component. These measures may include:

32 BSSC (2002)1 Issue 1.0
 SYSTEM ENGINEERING FOR SOFTWARE

• use of software design or methods which have performed

successfully in a similar application;

• failure-mode analysis of the software, with the insertion of
appropriate features for failure isolation and handling;

• defensive programming and restrictions on language features
used;

• use of formal design language for formal proof;

• unit testing shall be re-run on the final code if instrumentation
was used;

• test coverage of all decision branches;

• full inspection of source code;

• witnessed or independent testing;

• analysis of failure statistics

• removal of deactivated code.

BSSC (2002)1 Issue 1.0 33
SYSTEM ENGINEERING FOR SOFTWARE

Some techniques for increasing reliability/availability of the

software include:

• Use of a back-up system that can take control without loss of
data and within a given time

• Distribution of tasks/functions over platforms

• Separation of real-time and off-line functions

 Software connected with commanding can endanger a
mission if malfunction occurs. Examples of this kind of software are
commanding software, mission planning software, Orbit and
attitude manoeuvre software, On-board software management
software and automatic command procedure software. The
following techniques have been developed to provide safety for
this kind of operations:

• Commands are subject to individual pre-transmission checks

• Manually sent commands must be confirmed (“arm and go”)

• Critical commands or sequences are subject to a higher level of
authorization

• Complex sequences of commands (also automatic command
procedures) are subject to verification using a simulator.

• Commands identified as forbidden are filtered out by the system
(the filtering system should be time-dependent, since
commands may only be dangerous in certain states of the
system).

Any automatic command procedures stored as part of the
mission database have to be validated like software and put under
configuration control. The same procedures apply to any part of
the software that is driven by scripts. The possibility of human errors
during operation should also be taken into account and the
software should be able to detect and reject erroneous input and
behave in a reasonable way if errors occur.

3.3.2 System Partitioning

34 BSSC (2002)1 Issue 1.0
 SYSTEM ENGINEERING FOR SOFTWARE

A top-level partitioning of the system shall be established.

The partitioning, derived from the system specification above,
should include hardware, software and human operations as
appropriate to the system. All system requirements shall be
allocated to the different system components.

For almost all systems, there are many possible solutions that
may be developed. These cover a range of solutions with different
combinations of hardware, software and human operations. The
solution chosen for further development should be the technical
solution that meets the requirements most cost -effectively.

This activity shall ensure that the following tasks are carried
out:

• Partition requirements to appropriate subsystems

• Define subsystem interfaces

The partitioning shall be documented in the requirements
baseline. The subsystem interfaces are described in the Interface
Requirements Document, a part of the requirements baseline.

3.3.2.1 Partition requirements to appropriate subsystems

The requirements should be collected into related groups.
The different alternatives should be identified.

The different subsystems that make up the system shall be
identified. The subsystem identification should be driven by the
requirements but it may also be affected by other organisational
and environmental factors.

All requirements shall be assigned to the identified
subsystems. Functional requirements shall be allocated to (i.e.
executed in) only one subsystem, except for critical functions that
need to be implemented redundantly. If appropriate, non-
functional requirements may be allocated to all subsystems to
ensure, for example, that all subsystems have comparable quality.

BSSC (2002)1 Issue 1.0 35
SYSTEM ENGINEERING FOR SOFTWARE

The partitioning of the subsystem components allows the

identification of hardware and software configuration items.

Traceability of the system requirements to the subsystem
partitions shall be demonstrated. This will be retained in the design
justification file (DJF).

3.3.2.2 Define subsystem interfaces

The interfaces that are provided and expected by each
subsystem shall be defined. Once these interfaces have been
agreed, parallel development of the subsystems becomes possible.
The subsystem interfaces shall be defined in the Interface
Requirement Document (IRD).

3.3.3 System Level Requirements for Software Verification and Validation

The aim of this activity is to ensure that the customer's
verification and validation requirements, at the system level, are
identified. In particular, the activity shall ensure that the
requirements for software acceptance are addressed and
documented in the requirements baseline.

In order to ensure that software acceptance can be
successfully achieved, each requirement shall be defined such that
it is possible to:

• Check that the requirement is incorporated in the software
subsystem

• Verify that the software will implement the requirement

• Test that the software does implement the requirement.

3.3.4 System Level Requirements for Software Integration

3.3.4.1 Software observability requirements

The aim of this activity is to ensure that, when a software
product is composed of different modules, all the necessary

36 BSSC (2002)1 Issue 1.0
 SYSTEM ENGINEERING FOR SOFTWARE

software observability requirements are addressed and
documented in the requirements baseline.

Software observability is the property of a system for which
monitoring of visible variables (i.e. those available to the system
integrator) is always sufficient to determine the state of the system.
In other words, the system integrator should be able to isolate errors
by looking at the variables exported at the interface (available to
him), without knowing the internal details of each module.

The customer shall ensure that all such requirements are
documented to facilitate the integration of the software product
into the system.

The following methods are commonly employed in ground
segment software to achieve observability:

BSSC (2002)1 Issue 1.0 37
SYSTEM ENGINEERING FOR SOFTWARE

• Operator interaction: the operator is informed at his operations

interface about progress of the executing software and warned
about occurrence and location of abnormal conditions.

• Error monitoring and reporting: error conditions are monitored
and immediately reported. The system can then start logging
and recovery procedures or gracefully terminate the
application.

• Exception catching: similar to error monitoring. Abnormal
conditions trapped by the hardware or operating system trigger
the execution of a piece of code that will record the state of
the system and start recovery procedures (or gracefully
terminate the application).

• Debug-only code: error-checking code (usually slow to execute)
can be activated by running the system in debug mode or by
setting specific flags.

• Initialization of subroutines: Some critical variables are put into a
known state before starting a subroutine. This can be used to
validate the output of the subroutine, to temporarily remove
the functionality of the subroutine or to simplify the algorithm
that produces the output.

• Keep alive techniques: a module or communications protocol is
continuously monitored in order to detect if its execution halts.

3.3.4.2 Interface requirements

The customer shall specify all the interfaces between the
software and the system, in order to facilitate integration of the
software product into the system. The interfaces shall address both
the nominal and degraded modes (i.e. behaviour in case of failure)
of operation. These requirements shall be documented in the
Interface Requirements Document (IRD).

The customer shall ensure that the data media
requirements for each interface are specified.

38 BSSC (2002)1 Issue 1.0
 SYSTEM ENGINEERING FOR SOFTWARE

3.3.4.3 Development constraints

Although the majority of the constraints on the system will
normally be identified during the system analysis activity, there may
be constraints placed on the software development due to the
requirement to integrate the software with the system. These
constraints may include:

• The operating system

• The COTs used

• The software development environment

The customer shall document all such constraints in the
requirements baseline.

3.3.4.4 System Level Integration of Software

System level integration of ground segment software is
particularly important. This ensures that the different elements work
together properly. This is ensured in successive system level
integration tests, culminating in end-to-end test involving complete
chains of elements. Test s should check out:

BSSC (2002)1 Issue 1.0 39
SYSTEM ENGINEERING FOR SOFTWARE

• flow-control between elements,

• network capacity,

• that proper end-to-end functioning of protocols become
evident,

• error recovery, e.g. switching to redundant links in case of link
failure; for this it is important to be able to provoke error cases
(e.g. reduction of link bandwidth, injection of bit errors or
synchronisation errors),

• support of realistic operational scenarios (e.g. combinations of
real-time and playback links with tele-command activity),

• duration tests are also important at system level.

3.3.5 System Requirements Review

The output of the System Engineering for Software process
shall be formally reviewed during the System Requirements Review
(SRR). In the case where the customer’s product is an integrated
hardware and software product, this review shall be performed in
accordance with the ECSS system engineering standards [Ref. 12].
In cases where the customer’s product is a software product, this
should be a Joint Review. Participants should include the customer,
operators, developers (hardware and system engineers) and the
managers concerned. Part B of this guide describes the mechanism
for conducting a Joint Review.

The successful outcome of the review is the establishment of
the requirement baseline. This represents the customer’s needs
towards the system to be developed.

3.4 PROCESS OUTPUTS

3.4.1 Requirements Baseline

This document, containing a number of components,
expresses the customer’s needs. The requirements baseline (RB) shall
always be produced before a software project is started.

40 BSSC (2002)1 Issue 1.0
 SYSTEM ENGINEERING FOR SOFTWARE

Change control of the RB should be the responsibility of the

customer. Change of the RB may well affect the specification of
some or all of the software products within the system. The
management of the RB and other system level documentation is
addressed in Part B of this guide.

3.4.2 Interface Requirements Document

The interface requirements document (IRD) expresses the
customer’s interface requirements for the software to be produced.
It is mandatory in all cases where the software product is intended
for integration with the customer’s hardware or software products.
Depending on the project’s size and nature, the IRD can be
separate chapters or separate volumes of the RB.

3.4.3 Design Justification File

The design justification file (DJF) is generated and reviewed
at all stages of the development and review process. It contains
the documents that describe the trade-offs, design choice
justifications, test procedures, test results, evaluations and any
other documentation called for to justify the design of the product.
The DJF is the primary input for the Qualification and Acceptance
Reviews and acts as supporting input to other reviews.

At the end of the system engineering process, the DJF would
contain the traceability to system partitioning and the results of the
SRR milestone review.

BSSC (2002)1 Issue 1.0 41
SOFTWARE MANAGEMENT

CHAPTER 4

SOFTWARE MANAGEMENT

4.1 INTRODUCTION

The practices for addressing software management
requirements are covered in Part B of this guide. The majority of the
requirements for the management of software projects are
covered by the ECSS M series and Part B provides a mapping of
these requirements for the effective management of ground
segment software development.

This chapter deals with a subset of the project
management issues. The primary issue is the selection of an
appropriate life cycle model to organise the software processes for
a particular project.

The requirements for technical budget and margin
management are also defined.

4.2 PROCESS INPUTS

The normal input into this process is the definition of the
customer requirements in the requirements baseline.

4.3 ACTIVITIES

4.3.1 Planning

Software engineering activities shall be systematically
planned and carried out. Plans shall be developed to cover:

42 BSSC (2002)1 Issue 1.0
 SOFTWARE MANAGEMENT

• Development

• Configuration and Document Management

• Verification and Validation

• Maintenance

• Software Quality Assurance on Process and Product.

For further details of these plans please refer to Part B.

4.3.2 Selection of the Software Life Cycle Model

The organisation of the primary processes on a time base is
known as a life cycle model. A life cycle model defines a project into
a sequence of phases, which relate the processes to a time base. A
life cycle model defines the processes, activities and tasks that
occur within each phase and the relationships between each of
them. A number of life cycle models exist, but they all share the
software development processes summarised in chapter 2.

ECSS-E-40 provides a process model with processes that
sometimes overlap in time. Establishing a project involves
instantiating the process model and identifying dependencies, thus
creating project phases.

The life cycle model chosen is specific to the requirements of
the project, but it must address the software processes defined in
ECSS-E-40. The possible lifecycle models are discussed in more detail
in ECSS-E-40-4. [Ref 28] Each life cycle model is characterised by its
reviews and deliverables. Reviews are used to mark progress within
a project. These reviews normally mark the approval of specific
deliverables.

The software engineering processes must occur whatever
the size, the application, the hardware, the operating system or
programming language used. Each of these factors, however,
influences the development approach and the style and content
of the deliverable items. The life cycle model chosen is specific to

BSSC (2002)1 Issue 1.0 43
SOFTWARE MANAGEMENT

the requirements of the project but it must address the software
processes identified in chapter 2.

Normally the deliverables of each process must be reviewed
and approved before proceeding to the next process, although
this depends on the life cycle model chosen for the project. For
example, the design engineering process should not start before
the customer requirements have been defined but it may
commence before the architectural design, part of the software
requirements engineering process, has been agreed. The project
must balance the additional risks introduced by this approach with
the possible saving in development time.

There are six major reviews that mark progress in the
software life cycle. These reviews are:

• System Requirement Review (SRR), which marks approval of the
requirements baseline

• Software Requirements Review (SWRR), which marks the
customer’s agreement that all requirements with respect to the
RB are captured in the software requirements specification

• Preliminary Design Review (PDR), which marks approval of the
technical specification and the software architectural design

• Critical Design Review (CDR), which marks approval of the
detailed design, source code and the results of testing

• Qualification Review (QR), which marks approval of the
software against the technical specification

• Acceptance Review (AR), which marks acceptance of the
software against the intended operational environment

These reviews have been selected as the minimum
necessary for a workable contractual relationship. They are normally
conducted at the completion of a key activity. They must be
present in all projects and must include the customer. In long
projects, additional milestones should be added to measure the
progress of deliverables.

44 BSSC (2002)1 Issue 1.0
 SOFTWARE MANAGEMENT

It should be noted that these review points are applicable

to a single product. When a system or subsystem development
includes a number of software products, each product will undergo
the above reviews. There are also likely to be similar reviews that
address the integration of the individual products.

The supplier shall define the lower-level software engineering
methods and tools to be applied during the development. All
software development shall adopt the process model in this guide
but lower-level methods and tools, e.g. coding standards, shall be
chosen to suit the development approach. These standards shall
be approved, by the customer, as being fit for the application
under development.

4.3.2.1 Standard Waterfall Model

The Standard Waterfall Model is essentially a once-through,
do-each-activity-once approach. The key characteristic of the
waterfall model is that the processes defined by this guide are
organised in a sequential manner.

System
Engineering

(System
Requirements)

Requirements
Engineering

Design Engineering

System
Engineering

(System
Integration and

Validation)

Verification and Validation

SRR PDR CDR QR AR

Figure 4.1: The waterfall model

BSSC (2002)1 Issue 1.0 45
SOFTWARE MANAGEMENT

Completion of a phase is achieved by means of a review of

the deliverable outputs and their approval for use in the next
phase

A phase can start prior to the completion of a previous
phase but it must be recognised that this carries an associated risk.
Errors or omissions may become visible at a later stage, requiring
rework with an associated cost and schedule impact.

The waterfall model allows for a limited amount of iteration
between phases, to allow for the correction of defects.

4.3.2.2 Incremental delivery model

System
Engineering

(System
Validation

Build 2)

System
Engineering

(System
Validation
Build 1)

System
Engineering

(System
Requirements)

Requirements
Engineering

Increment 1

Verification and Validation

SRR PDR CDR1 QR1 AR1

Increment 2

CDR2 QR2 AR2

Figure 4.2: The incremental delivery model

The incremental delivery life cycle model starts with a given
set of requirements and performs the development in a sequence
of builds. The first build incorporates a part of the requirements, the
next build adds more requirements and so on until the complete
product is built. At each build, the necessary processes, activities

46 BSSC (2002)1 Issue 1.0
 SOFTWARE MANAGEMENT

and tasks are performed e.g. software requirements engineering
may be performed once, while the design engineering process is
performed during each build.

In this approach, as each build is developed, the activities
and tasks in the development process are employed in parallel with
the operations and maintenance processes.

4.3.2.3 Evolutionary development model

D E V

O p
1

1

D E V

O p
2

2

D E V

O p
3

3

 Figure 4.3. The evolutionary development model

The Dev. box is equivalent to Waterfall model in Figure 4.1

The Op boxes represents an operational phase, using a specific release

This approach is characterised by the planned
development of multiple releases. All processes of the life cycle are
executed to produce a release (this can include System
Engineering depending upon whether all system engineering
requirements are knowable at the start). Each release incorporates
the experience of earlier releases. The evolutionary approach may
be used because, for example:

BSSC (2002)1 Issue 1.0 47
SOFTWARE MANAGEMENT

• Some customer experience is required to refine and complete

the requirements

• Some parts of the implementation may depend on the
availability of future technology

• Some new customer requirements are anticipated but not yet
known

• Some new customer requirements may be significantly more
difficult to meet than others and it is decided not to allow them
to delay a usable delivery

In an evolutionary development, the supplier should
recognise the customer's priorities and produce the parts of the
software that are both important to the customer and possible to
develop with the minimal technical problems or delays.

The disadvantage of the evolutionary approach is that if
the requirements are very incomplete at the beginning, the initial
software structure may not bear the weight of later evolution.
Expensive redesign may be necessary or, even worse, temporary
solutions may become embedded in the system and distort its
evolution. Customers may become impatient with teething
troubles of each new release. In each development cycle, it is
important to aim for a complete statement of requirements to
reduce risk and to develop an adaptable design to ensure later
modifiability. In an evolutionary development, all requirements do
not need to be fully implemented in each development cycle but
the architectural design should take account of all known
requirements.

The Dynamic Systems Development Method (DSDM) is a
more formal method for undertaking evolutionary development,
which allows a management framework for undertaking the
development.

48 BSSC (2002)1 Issue 1.0
 SOFTWARE MANAGEMENT

4.3.3 Technical Budget and Margin Management

This section deals with the areas of computer resources (e.g.
CPU load, maximum memory requirement) and performance
requirements. The technical budget targets and the margin
philosophy dedicated to the software shall be specified by the
customer in the requirements baseline. The margin philosophy
describes the rationale for margins allocated to the performance
parameters and computer resources of a development. The margin
philosophy also defines how these margins are managed during the
execution of a project. The importance of this activity varies from
system to system and the relative priority of different requirements.

For on-board systems, resource requirements (e.g. RAM,
processor type) are fixed constraints on the design. For the majority
of ground segments, there is more flexibility and these issues are
normally addressed at the design stage. Potential solutions to
performance concerns can be addressed by increasing hardware
capacity or de-scoping the software functionality but the issues
should be considered as design issues and explicitly addressed.

The supplier shall manage the margins regarding the
technical budgets and present their status at each milestone,
explaining how the margins were derived. Specific evaluation of
these aspects shall be considered as part of the verification and
validation issues at each of the key development processes. In
particular, performance monitoring should be carried out whenever
possible.

The results of the evaluation shall be documented in the
design justification file and considered at the formal review points.

4.4 PROCESS OUTPUTS

The following plans are detailed in Part B and are a result of
the planning process:

BSSC (2002)1 Issue 1.0 49
SOFTWARE MANAGEMENT

• Software development plan

• Software configuration management plan

• Software verification plan

• Software validation plan

• Software maintenance plan

• Software product assurance plan

The outputs from the review processes are fully defined in
the chapters dealing with the appropriate processes.

The development life cycle model chosen for the project
and the associated reviews shall be documented by the supplier.

The information shall be retained in the software
development plan.

50 BSSC (2002)1 Issue 1.0
 SOFTWARE REQUIREMENTS ENGINEERING

CHAPTER 5

SOFTWARE REQUIREMENTS ENGINEERING

5.1 INTRODUCTION

The Software Requirements Engineering process is
concerned with the problem analysis and the top-level solution for
the software products defined during the system engineering
process. Each software subsystem may be a single software product
or may contain a number of software products. This chapter defines
the process for generating the software requirements for a software
product. For a particular project, there may be a number of
instances of this process, corresponding to the partitioning from the
system engineering process.

The Software Requirements Engineering process bridges
the gap between the system level software allocation and the
software design engineering. Requirements engineering specifies
software functions and performance and establishes design
constraints.

There are two main activities involved in the process:
requirements analysis and architectural design. The purpose of
requirements analysis is to analyse the statement of system
requirements, specified in the requirements baseline, to produce a
set of software requirements that are as complete, consistent and
correct as possible. The purpose of the architectural design process
is to define a collection of software components and their
interfaces to establish a framework for developing the software
product.

The definition of the software requirements is the
responsibility of the supplier. The participants in this activity include
software developers, hardware engineers and operations
personnel. They all have a different concept of the end product.
These concepts must be analysed and then synthesised into a

BSSC (2002)1 Issue 1.0 51
SOFTWARE REQUIREMENTS ENGINEERING

complete and consistent statement of requirements about which
everyone can agree.

The definition of the architectural design is the responsibility
of the software engineers. Other kinds of engineers may be
consulted during the process and representatives of the users and
operations personnel should be involved in the review.

The primary output of the Software Requirements
Engineering process is the technical specification (TS). As well as
defining what the product must do, it is also the reference against
which both the design and the product will be verified. Although
‘how’ aspects may have to be addressed, they should be
eliminated from the TS, except for those aspects that constrain the
software. Examples of constraints that may be placed on the
development include the use of COTS, existing infrastructure and
schedule.

The architectural design is documented in the design
definition file (DDF). This should document each component and its
relationship with other components. The DDF is complete when the
level of definition of components and interfaces is sufficient to
enable individuals or small groups to work independently in the
Design Engineering process.

5.2 PROCESS INPUTS

The input to the Software Requirements Engineering process
is the requirements baseline (RB).

5.3 ACTIVITIES

The Software Requirements Engineering process is
composed of the following activities:

52 BSSC (2002)1 Issue 1.0
 SOFTWARE REQUIREMENTS ENGINEERING

• Software Requirements Analysis

• Software Architectural Design

• Software Verification and Validation

5.3.1 Software Requirements Analysis

This activity is used to transform those system requirements
specific to the software partitions, specified in the RB, into detailed
software requirements specified in the TS. This is achieved by
analysing the problem, as stated in the RB, and building a coherent,
comprehensive description of what the software is required to do.
The TS contains the supplier’s view of the problem, rather than the
customer’s. This view should be based upon a model of the
software product, built according to a recognised, documented
method.

Software requirements may require the construction of
prototypes to clarify or verify them. Requirements which cannot be
justified by modelling, or whose correctness cannot be
demonstrated in a formal way, may need to be prototyped. Man-
machine interface requirements often require this kind of
‘exploratory prototyping’. This is discussed further in Chapter 12.

The activity of software requirements analysis is composed of
the following tasks:

• Establishing the software requirements

• Identification of each requirement

• Evaluation of the requirements

5.3.1.1 Establishing the software requirements

The supplier shall establish the software requirements. In
order to determine the requirements, the supplier shall construct a
logical model of the proposed software product. The logical model
is an implementation-independent model of what is needed by the
customer. In all but the smallest projects, CASE tools should be used
for building a logical model.

BSSC (2002)1 Issue 1.0 53
SOFTWARE REQUIREMENTS ENGINEERING

In some projects, the software may be required to

implement a specific algorithm or mathematical relationship. The
logical model, in such circumstances, shall provide sufficient
information to demonstrate to the customer that the supplier
understands the algorithm. The logical model is a simplification of
the details described below and, thus, an example of tailoring of
this guide.

The logical model aims to capture the functional
requirements of the software product and provides details of:

• the external entities outside of the software product

• the transactions between the external entities and the
software product

The logical model aims to give the software product a
robust and adaptable structure. The model normally has three
main components, organised according to the development
model used, to identify the following aspects:

• the transactions between the software product and the
external environment

• the principal functionality of the software product

• the time-based behaviour of the software product.

The latter point is essential for some software products.

A good quality logical model should obey the following rules:

54 BSSC (2002)1 Issue 1.0
 SOFTWARE REQUIREMENTS ENGINEERING

• Functions or operations should have a single, definite purpose.

Names should have a declarative structure (e.g. ‘Validate
Telecommands’) and say ‘what’ is to be done rather than
‘how’. Good naming also allows design components with strong
cohesion to be easily derived.

• Functions or operations should be appropriate to the level at
which they appear (e.g. ‘Calculate Checksum’ should not
appear at the same level as ‘Verify Telecommands’)

• Interfaces should be minimised. This allows design with weak
coupling to be easily derived.

• The model should omit implementation information (e.g. file,
record, task, module).

• The performance attributes of each function or operation
(capacity, speed, etc) should be stated.

• Critical functions or operations should be identified. Critical
software requirements are described in section 6.3.3.

The software requirements are obtained by examining the
logical model and they should be rigorously described.
Requirements must be described in text to ensure that they are
testable. It is preferable, where possible, to supplement the textual
requirements using non-textual means, such as by the use of
diagrams. To facilitate this, the specification of the requirements
should make use of the logical model, with the aim of minimising the
supplementary text. This is particularly beneficial when CASE tools
are used to assist in the creation of the logical model, as the output
of the tool can usually be imported into the specification
document.

The logical model should be consistent with any reuse
requirements (e.g. should not conflict with the logical model of any
reused software).

The requirements shall be derived from the system level
software requirements, as described in Chapter 4, which identify a
range of functional and non-functional attributes. The software

BSSC (2002)1 Issue 1.0 55
SOFTWARE REQUIREMENTS ENGINEERING

requirements should be organised in the following general
categories:

• Characteristics of software products

• Interfaces Issues

• Security issues

• Safety issues

5.3.1.1.1 Characteristics of software products

Although there are many ways of describing the
characteristics of software products, the use of an internationally
agreed standard can assist. The use of the ISO definition of the
characteristics of software products, [Ref. 14], leads to the
classification shown in Table 5.1 below.

Requirement Description

Functionality Specify ‘what’ the software has to do i.e. define
the purpose of the software.

Specify numerical values for measurable variables
(e.g. rate, frequency, capacity, speed).
Performance requirements may be incorporated
in the quantitative specification of each function
or stated as separate requirements. Qualitative
performance requirements are unacceptable.

Specify the constraints on how the software is to
be verified. They may include requirements for
simulation, emulation, live tests with simulated
and/or real inputs, and interfacing with the
testing environment.

Specify the constraints on how the function is to
be validated.

Usability Specify how the software will run and how it will
communicate with human operators. Usability

56 BSSC (2002)1 Issue 1.0
 SOFTWARE REQUIREMENTS ENGINEERING

Requirement Description

requirements include all user interface, usability
and human-computer interaction requirements as
well as the logistical and organisational
requirements.

Efficiency Specify the upper limits on physical resources such
as processing power, main memory, disc space
etc. These are especially needed when extension
of processing hardware late in the lifecycle
becomes too expensive, as in many embedded
systems

Maintainabilit
y

Specify any project-specific requirements for the
documentation.

Specify how easy it is to repair faults and adapt
the software to new requirements. The ease of
performing these tasks should be stated in
quantitative terms, such as the mean time to
repair a fault (MTTR). They may include constraints
imposed by the potential maintenance
organisation. Maintainability requirements may be
derived from the user’s availability and
adaptability requirements.

Portability Specify the ease of modifying the software to
execute on other computers and operating
systems. Possible computers, other than those of
the target system, should be stated.

Reliability Specify the acceptable mean time interval
between failures of the software, averaged over a
significant period (MTBF). They may also specify
the minimum time between failures that is ever
acceptable. Reliability requirements have to be
derived from the user’s availability requirements.

Table 5.1 Types of software requirements

BSSC (2002)1 Issue 1.0 57
SOFTWARE REQUIREMENTS ENGINEERING

5.3.1.1.2 Interface Issues

Specify hardware, software or database elements with
which the system, or system component, must interact or
communicate. Interface requirements should be classified into
software, hardware or communications interfaces. Software
interfaces could include operating systems, software environments,
file formats, database management systems and other software
applications. Hardware interface requirements may specify the
hardware configuration. Communications interface requirements
constrain the nature of the interface to other hardware and
software. They may demand the use of a particular network
protocol. External interface requirements should be described or
referenced in the ICD.

5.3.1.1.3 Security Issues

Specify the requirements for securing the system against
threats to confidentiality, integrity and availability. These should
describe the level and frequency of access allowed to authorised
users of the software product. The level of physical protection of the
computer facilities may be stated.

5.3.1.1.4 Safety Issues

Specify any requirements to reduce the possibility of
damage that can follow from software failure. The safety
requirements for the system components will have been identified
from the system level analysis, as described in Chapter 4. Software
should be considered safety-critical if the information it presents
can lead to injury to people, affect the mission or damage property.

The safety requirements for software, which specify what
would happen when failures of a critical piece of software actually
do occur, will normally be identified at the system level. In deriving
the software requirements, it must be ensured that these actions
are traceable throughout the software and that appropriate
verification and validation is undertaken.

58 BSSC (2002)1 Issue 1.0
 SOFTWARE REQUIREMENTS ENGINEERING

5.3.1.2 Identification of Software Requirements

Each software requirement must be uniquely identified.
Each requirement should include the attributes listed in Table 5.2
below.

Attribute Description

Identifier Each software requirement shall include an identifier,
to facilitate tracing through subsequent processes.

Need Essential software requirements shall be marked as
such. Essential software requirements are non-
negotiable; others may be less vitally important and
subject to negotiation.

Priority For incremental delivery, each software requirement
shall include a measure of priority so that the
developer can decide the production schedule.

Stability Some requirements may be known to be stable over
the expected lifecycle of the software; others may be
more dependent on feedback from the design
engineering process or may be subject to change
during the software lifecycle. Such unstable
requirements should be flagged.

Type Identify the type of requirement, as specified in Table
5.1

Criticality Each requirement should identify its criticality
category, using the types in chapter 3

Verificatio
n method

The method of verification for each requirement
should be given, using the guidance in this document

Source References that trace software requirements back to
the RB shall accompany each software requirement.

Table 5.2 Requirement Identification Attributes

BSSC (2002)1 Issue 1.0 59
SOFTWARE REQUIREMENTS ENGINEERING

As well as the attributes of requirements, as described in

Table 6.2, the following aspects should be considered when
identifying the requirements of a software product:

• Consistency of the requirements

• Duplication of the requirements

5.3.1.2.1 Consistency of software requirements

A set of requirements is consistent if, and only if, no individual
requirement conflicts with another requirement. Clarity assists in
ensuring that requirements are consistent. A requirement is clear if it
has one, and only one, interpretation. Clarity implies lack of
ambiguity. If a term used in a particular context has mult iple
meanings, the term should be qualified or replaced with a more
specific term. There are a number of types of inconsistency, for
example:

• Different terms for the same thing

• The same term used for different things

• Incompatible activities happening at the same time

• Activities happening in the wrong order

The achievement of consistency is made easier by using
methods and tools.

5.3.1.2.2 Duplication of software requirements

Duplication of software requirements should be avoided,
although some duplication may be necessary to make the TS
understandable. There is always the danger that a requirement
that overlaps or duplicates another will be overlooked when the TS
is updated. This leads to inconsistencies. Where duplication occurs,
cross-references should be inserted to enhance modifiability.

5.3.1.3 Evaluation of software requirements

The supplier shall evaluate the software requirements to
ensure that all the criteria specified above have been addressed.

60 BSSC (2002)1 Issue 1.0
 SOFTWARE REQUIREMENTS ENGINEERING

The software requirements related to safety, security and

criticality shall be explicitly addressed. The use of suitably rigorous
methods for evaluating these criteria is recommended.

The requirements shall be evaluated for traceability with the
system partitioning requirements. For the TS to be complete, each
requirement in the RB must be accounted for. A traceability matrix
must be inserted into the design justification file (DJF) to prove
completeness. Completeness has two aspects:

• No system requirement has been overlooked;

• An output has been specified for every possible set of inputs

The phrase ‘To Be Defined’ (TBD) indicates incompleteness.
The nature of the lifecycle model chosen for the development will
impact on the completeness of the requirements. For example, the
waterfall model assumes that the requirements are complete
before moving onto the next process, so there must be no TBDs in
the TS. Other lifecycle models may be chosen when extraction of
the requirements is more difficult and, in this case, TBDs may be
perfectly acceptable. Subsequent activities in the project would
be targeted towards completion of the TBDs.

The requirements shall be evaluated for verifiability. This
means that it must be possible to:

• Check that the requirement is incorporated in the design

• Verify that the software will implement the requirement

• Latterly, test that the software does implement the requirement

5.3.1.4 Software Requirements Review (SWRR)

The outputs of the software requirements engineering
process shall be formally reviewed during the Software
Requirements Review (SWRR). This shall be a technical review and
shall include the customer. The principal aim of the SWRR is to agree
with the customer that all their requirements with respect to the RB
are captured in the Software Requirements Specification within the

BSSC (2002)1 Issue 1.0 61
SOFTWARE REQUIREMENTS ENGINEERING

technical specification (TS). The successful completion of the review
establishes a baseline for the architectural design of the software.

After the start of the software architectural design process,
modifications to the software requirements can increase costs
significantly. The software architectural design process should not
be started if there are still doubts, major open points or
uncertainties in the software requirements.

5.3.2 Software Architectural Design

This activity is concerned with development and evaluation
of the architectural design of the software and its subsequent
documentation in the DDF. The generation of the top-level design
generally involves:

• Transformation of the requirements into an architecture

• Development of the interface specification

• Identification of test requirements

• Evaluation of the architecture

• Preliminary Design Review

A recognised method for software design shall be adopted
and applied consistently in this activity. Where no single method
provides all the capabilities required, a project-specific method
may be adopted, which should be a combination of recognised
methods.

5.3.2.1 Construction of the architectural model

The supplier shall construct an architectural model that
describes the design of the software, using implementation
technology. The architectural model shall be derived from the
software requirements, described in the TS. In transforming the
software requirements to an architectural model, design decisions
are made in which requirements are allocated to software
components, as defined in chapter 2, and their inputs and outputs
defined. Design decisions should also satisfy non-functional

62 BSSC (2002)1 Issue 1.0
 SOFTWARE REQUIREMENTS ENGINEERING

requirements, design quality criteria and implementation
technology considerations. Design decisions should be recorded in
the design justification file (DJF).

Modelling is an iterative process. Each part of the model
needs to be specified and re-specified until a coherent description
of each component is achieved. In all but the smallest of projects,
CASE tools should be used for building the architectural model.
They make consistent models easier to construct and modify.

The architectural model should be decomposed into
components (e.g. classes, objects, programs, tasks, files, modules,
etc) according to the chosen design method. There should be
distinct layers within the architecture, with each component
occupying a specified layer. Components in a given layer should
provide services to the components in the layer above and use the
services of the layer immediately below. Component definition
should continue until:

• All software requirements have been allocated to components

• Components may be re-used or are small enough to be
designed, code and unit tested

Layering assists the control of complexity by the use of
'information hiding'. By treating the lower layers as essentially 'black
boxes', the information necessary to the internal workings of the
lower layers can remain hidden.

The task of constructing the architectural model results in a
set of components having defined operations and interfaces. The
operations of each component will be derived from the RB. The
level of design detail will show which requirements are to be met by
each component but not necessarily how to meet them: this will
only be known when the design engineering process is undertaken.
The interfaces between components will be restricted to a
definition of the information to exchange and not how to
exchange it, unless this contributes to the success or failure of the
chosen design.

BSSC (2002)1 Issue 1.0 63
SOFTWARE REQUIREMENTS ENGINEERING

For each component the following information shall be

defined:

• inputs

• functions or operations to be performed

• outputs

The architectural design shall be documented in the design
definition file. Although textual descriptions can be used, ideally the
model should be represented diagrammatically. The architectural
model should show, at each layer of the architecture, the
interactions between the components. Descriptions of the design
should be included where possible, using an appropriate technique.
The diagramming technique used should be documented and
referenced.

The proof that the architecture meets all the software
requirements shall be retained in the design justification file (DJF).

The method of deriving the architectural model will depend
on the design method chosen but attention should be paid to the
following aspects.

5.3.2.1.1 Implementation of non-functional requirements

The design of each component should be reviewed against
the non-functional requirements given in the TS. While some non-
functional requirements may apply to all components in the system,
other non-functional requirements may affect the design of only a
few components.

5.3.2.1.2 Design quality criteria

Designs should be adaptable, efficient and understandable.
Adaptable designs are easy to modify and maintain. Efficient
designs make minimal use of available resources but care must be
taken to balance this against other criteria such as ease of

64 BSSC (2002)1 Issue 1.0
 SOFTWARE REQUIREMENTS ENGINEERING

understanding. Designs must be understandable if they are to be
built, operated and maintained effectively.

Aiming for simplicity in form and function in every part of the
design assists the attainment of these goals. There are a number of
metrics that can be used for measuring complexity (e.g. number of
interfaces per component, number of objects) and their use should
be considered.

Simplicity of function is achieved by maximising the
‘cohesion’ of individual components (i.e. the degree to which the
activities internal to the component are related to each other).

Simplicity of form is achieved by:

• Minimising the ‘coupling’ between components i.e. the number
of distinct items that are passed between components

• Ensuring that the function a component performs is appropriate
to its level in the architecture

• Matching the software and data structures

• Maximising the number of components that use a given
component

• Restricting the number of child components to seven or less

• Removing duplication between components by making new
components.

Design should be modular, with minimal coupling between
components and maximum cohesion within each component.
There is minimal duplication between components in a modular
design. Components of a modular design are often described as
‘black boxes’ as they hide internal information from other
components. It is not necessary to know how a black box
component works to know what to do with it.

Understandable designs employ terminology in a consistent
way and always use the same solution to the same problem. Where
teams of designers collaborate to produce a design, permitting

BSSC (2002)1 Issue 1.0 65
SOFTWARE REQUIREMENTS ENGINEERING

unnecessary variety can considerably impair understandability.
CASE tools, design standards and design reviews all help to enforce
consistency and uniformity.

5.3.2.1.3 Trade-off between alternative designs

There is no unique design for any software system. Studies of
the different options may be necessary. A number of criteria, which
will depend on the actual application, will be needed to choose
the best option.

There is, however, a cost and time issue when evaluating
alternative designs. On a given project, this will effect the amount
of time that can be spent on assessing an alternative design. The
consideration of design quality, discussed above, will give some
indication as to whether a specific approach is appropriate. When
a well specified, cohesive and minimally coupled design solution has
been derived, alternative designs should only be considered when
there is a clear need.

Prototyping may be performed to verify the assumptions in
the design or to evaluate alternative design approaches. This is
called ‘experimental prototyping’. For example, if a program
requires fast access to data stored on disc, then various methods of
file access could be coded and measured. Different access
methods could alter the design approach quite significantly and
prototyping the access method would become an essential part of
the design process.

Only the selected approach shall be documented in the TS.
The need for prototyping, code listings, trade-off criteria, reasons for
the chosen solution, etc., should be documented in the DJF.

5.3.2.2 Definition of the Interfaces

The interfaces external to the software product and the
interfaces between the components in the architecture shall be
defined. The internal and external interfaces shall be documented
in the ICD, although the format of this shall depend on the design

66 BSSC (2002)1 Issue 1.0
 SOFTWARE REQUIREMENTS ENGINEERING

method chosen. The interfaces are normally specified as data
structures. The definition of each interface shall include the:

• Service provided by the interface

• Description of each element (e.g. name, type, dimension) in the
interface

• Range of possible values of each element

• Initial values of each element

Software often has special kinds of interfaces, for example:

• Man Machine Interface (MMI) or Human Computer Interface
(HCI)

• Application Programmer Interface (API), which will describe the
calls to a system providing services to an application. The ICD
will be an API specification, describing the services and the
signatures of the various calls to the services, these latter
expressed in a suitable computer-readable language

• ASCII file interfaces – typically used for expressing limited
amounts of data e.g. orbit state vectors, tele-command
parameters for import to a control

The interface components will normally only be defined at a
high-level at this point. Care should be taken to ensure that the
interface design hides the implementation detail.

5.3.2.3 Software Integration Planning

The developer shall develop preliminary test requirements
and plan for the software integration process.

Integration is the task of building a software product by
combining its components into a working system. The integration
task must be planned to ensure that components are integrated in
a useful sequence. Integration testing should verify that the major
components interface correctly. The approach to integration
planning should be to ensure that the minimum time is spent in

BSSC (2002)1 Issue 1.0 67
SOFTWARE REQUIREMENTS ENGINEERING

testing, while ensuring that the software product is adequately
tested.

The software integration plan should define the scope,
approach, resources and scheduling for the integration task. This
information shall be contained in the design justification file (DJF).

5.3.2.4 Evaluation of the Architecture

The developer shall evaluate the software architecture and
the interface design. In particular, the following aspects shall be
explicitly addressed:

• The design is correct, consistent and traceable with respect to
the requirements

• The design implements the proper sequence of events, inputs,
outputs, interfaces, logic flow, allocation of timing and sizing
budgets, and error definition, isolation and recovery

• The design implements safety, security and other critical
requirements correctly by the use of suitable rigorous methods

The results of the evaluation process shall be documented in
the design justification file.

5.3.2.5 Preliminary Design Review (PDR)

The outputs of the software requirements engineering
process shall be formally reviewed during the Preliminary Design
Review (PDR). This shall be a technical review and shall include the
customer. The principal aim of the PDR is to agree with the
customer that all their needs with respect to the RB are captured in
the TS. An additional aim of the PDR is to review the software
architectural design. The successful completion of the review
establishes a baseline for the development of a software item.

After the start of the design engineering process,
modifications to the architectural design can increase costs
significantly. The design engineering process should not be started if

68 BSSC (2002)1 Issue 1.0
 SOFTWARE REQUIREMENTS ENGINEERING

there are still doubts, major open points or uncertainties in the
architectural design.

5.3.3 Software Verification and Validation

All the requirements for verification and validation of the
software product shall be documented.

The information regarding project criticality, the tools and
techniques for verification and validation, and the items affected,
shall be added to the DJF. The DJF shall also include the
organisational aspects of verification and validation.

The following aspects of verification and validation shall be
considered, and documented, at this point:

• Project level requirements

• Tasks

• Organisation

5.3.3.1 Project level requirements

The effort required for verification and validation shall be
determined, as a function of the criticality of the software product.
Risk, dependability and safety analysis shall be performed if any of
the following aspects are traceable to the software product:

• Potential of an undetected error in the software requirement for
causing death or personal injury, mission failure or financial or
catastrophic equipment loss or damage

• The maturity of and risks associated with the software
technology to be used

• Availability of funds and resources in the project for verification
and validation

The evaluation of the criticality of the software product shall
be documented in the design justification file.

BSSC (2002)1 Issue 1.0 69
SOFTWARE REQUIREMENTS ENGINEERING

5.3.3.2 Tasks

The verification and validation tasks suitable for the
software product, given the assessment of the criticality of the
software product, shall be identified. A number of possible
verification and validation tasks may be used on a project, for
example document reviews, inspections and testing.

The verification activities for each component, that are
appropriate to the reliability and safety requirements, should be
defined. For example:

• Design documentation must be internally reviewed

• Reused design components must be inspected

The methods and tools chosen shall be documented in the
design justification file.

5.3.3.3 Organisation

The need for independent verification and/or validation
shall be established as a function of the criticality of the software. If
required, a qualified organisation shall be selected to perform the
required processes.

The organisational requirements shall be specified in the
technical specification.

5.4 PROCESS OUTPUTS

The main outputs of the requirements engineering process
are the TS, the updated DJF, the DDF and the ICD.

5.4.1 Technical Specification

This document contains the developer’s response to the
requirements baseline.

70 BSSC (2002)1 Issue 1.0
 SOFTWARE REQUIREMENTS ENGINEERING

5.4.2 Design Justification File

This file contains the updated information from the
requirements engineering process. At the end of this process, the
DJF will include the top-level design trade-offs, the requirement
traceability and top-level architecture traceability matrices and
the PDR milestone report. The DJF also contains the planning
aspects for verification and validation.

5.4.3 Design Definition File

This file documents the results of all design activities. At the
end of the requirements engineering process, the DDF will contain
the software architectural design and the evidence of the
customer approval of the TS.

5.4.4 Interface Control Document

This document is the developer’s response to the IRD and is
normally part of the TS. At the end of the requirements engineering
process, the ICD would normally specify the external interfaces to
the software item and the preliminary (top-level) external and
internal interface designs.

BSSC (2002)1 Issue 1.0 71
SOFTWARE DESIGN ENGINEERING

CHAPTER 6

SOFTWARE DESIGN ENGINEERING

6.1 INTRODUCTION

The Software Design Engineering process can be called the
'implementation' activity of the life cycle. The purpose of this
process is to detail the software design and to code, document
and test the design.

The software design engineering process is the responsibility
of the software engineers. Other kinds of engineers may be
consulted during the process. Engineers not responsible for the
process may independently verify the software.

Important considerations before starting the code
production are the adequacy and availability of computer
resources for software development. There is no point in starting the
code and test activities if the computers, operating system
software and, if applicable, communications network are not
available or sufficiently reliable and stable. Productivity can drop
dramatically if these resources are not adequate. Failure to invest in
software tools and development hardware often leads to bigger
development costs.

6.2 PROCESS INPUTS

The principal inputs to the Software Design Engineering
process are as follows:

72 BSSC (2002)1 Issue 1.0
 SOFTWARE DESIGN ENGINEERING

• Technical specification (TS)

• Interface control document (ICD)

• Design justification file (DJF)

• Design definition file (DDF)

6.3 ACTIVITIES

The Software Design Engineering process consists of the
following activities:

• Design of software

• Coding and testing

• Integration

6.3.1 Design of Software Items

For each software product identified during the
requirements engineering process, this activity consists of the
following tasks:

• Design of the software component

• Development and documentation of the interface design

• Drafting of the software user manual

• Software unit test planning

• Software integration planning

• Evaluation of the detailed design and test specification

6.3.1.1 Software Component Design

In the software component design task, components of the
architectural model are decomposed until they can be expressed
as units in the selected programming language. A software unit is a
programming entity that is discrete and identifiable with respect to
compiling, combining with other units and loading.

BSSC (2002)1 Issue 1.0 73
SOFTWARE DESIGN ENGINEERING

For each of the components in the TS, the design detail is of

each component specification is expanded.

The methods and CASE tools used for architectural design
should be used in this task.

The format of the software component design will be heavily
influenced by the method chosen. In all cases, however, the
software component design task shall provide a set of component
specifications that are consistent, coherent and complete. Each
specification defines the functions, inputs, outputs and internal
processing of the component.

The software component design documents must be added
to the design definition file (DDF) that was input to the Design
Engineering process. It shall be ensured that all components from
the architectural design are allocated to software units.

6.3.1.2 Interface Design

The initial interface design produced during the
architectural design activity shall be updated to provide the
additional information available at this level.

The interfaces external to the software product and the
interfaces between the components in the architecture shall be
defined. The internal and external interfaces shall be documented
in the ICD, although the format of this shall depend on the design
method chosen. The interfaces are normally specified as data
structures. The definition of each interface shall include the:

74 BSSC (2002)1 Issue 1.0
 SOFTWARE DESIGN ENGINEERING

• Service provided by the interface

• Description of each element (e.g. name, type, dimension) in the
interface

• Range of possible values of each element

• Initial values of each element

The detailed design of the interfaces shall permit coding
without the requirement for further information.

The interface control document, part of the TS, shall be
updated to include the additional levels of detail for both internal
and external interfaces. It should be noted that the format of the
ICD should reflect the chosen design method.

6.3.1.3 Drafting of Software User Manual

The software user manual, which is normally contained
within the design definition file, shall be drafted based on the
information available during the detailed design task.

The purpose of the software user manual is to describe how
to use the software product. It should contain sufficient information
to describe what the software product does and instructions on
how to achieve this.

6.3.1.4 Software Unit Test Planning

The supplier shall define and document the unit test
requirements and shall plan for testing the software units. Unit tests
verify the design and implementation of all software design
components.

Unit tests are organised in two ways. Black box unit testing is
used to verify that a unit doing what it is supposed to do. White box
testing is used to verify that the unit is operating in the way that it
was intended. Part B of this Guide addresses possible ways of unit
testing a software product. As a minimum, the unit test plan

BSSC (2002)1 Issue 1.0 75
SOFTWARE DESIGN ENGINEERING

requirements include the generation of test programs and
associated test data sets.

The unit test plan requirements shall be documented in the
software unit test plan section of the DJF.

6.3.1.5 Software Integration Planning

Integration is performed when the major components are
assembled to build the system. Integration testing should be
directed at verifying that major components interface correctly.

The software should be integrated incrementally. The
sequence of integrating the major components to create the
system shall be defined. The integration sequence should add
components in order of their number of dependencies, those with
least dependencies normally being added first. This approach
facilitates the diagnosis of problems and minimises the amount of
test software that needs to be developed to substitute for
components not yet integrated. Detailed guidance on integration
planning is given in Part B of this Guide.

The test planning should ensure that adequate tests are
developed to ensure that all data exchanged across an interface
agrees with the specifications in the ICD.

The preliminary software integration plan, part of the DJF,
created during the top-level architectural design task, shall be
updated to reflect the greater level of detail now available.

The software integration plan shall define the integration
sequence and the integration tests at each step. Each integration
test should verify the function and interfaces to be added at that
step.

6.3.1.6 Evaluation of Design and Test Specifications

The supplier shall ensure that software component design
documents, in the design definition file, and the test specifications

76 BSSC (2002)1 Issue 1.0
 SOFTWARE DESIGN ENGINEERING

shall be evaluated, with the results of the evaluations documented.
The results shall be documented in the design justification file.

The detailed design shall be evaluated in accordance with
the following requirements:

• correctness, consistency and traceability to the TS

• correct implementation of the proper sequence of events,
inputs, outputs, interfaces

• Feasibility of testing

• Feasibility of operation and maintenance

The test specifications (and by implication the design) shall
be evaluated for the appropriateness of integration test methods
and standards. The evaluation should ensure that suitable rigorous
methods have been used to assess safety, security and other critical
methods in the software design.

The results of the evaluation shall be documented in the
design justification file, which will be available for use in the Critical
Design Review. Guidelines on the approach to the evaluation and
the potential tailoring to different types of project are given in Part
B of this Guide.

6.3.2 Coding and Testing

For each software item, this activity consists of the following
tasks:

BSSC (2002)1 Issue 1.0 77
SOFTWARE DESIGN ENGINEERING

• Develop and document software units

• Test software units

• Update the software user manual

• Update integration testing requirements

• Evaluate software code and test results

6.3.2.1 Develop and document software units

This task is concerned with the translation of the software
component designs into a software programming language. This
source code will, in turn, be translated into machine-dependent
object code by the compiler and ultimately into machine-code
that executes on the eventual system.

The implementation and testing of the system is made easier
if the following guidelines are followed

• Use of consistent programming style

• Re-use of existing material

• Use of automated support environments

A consistent coding style can reduce complexity of the
software unit. All code produced should be consistent with suitable
coding conventions for the chosen programming language. ESA
has developed a coding standards for ADA and C/C++ [Ref. 17,18],
that shall be applied when these languages are being used. The
general guidelines in these standards is also likely to be applicable
when other languages are being used.

The solutions used on previous projects to known problems
should be considered for adoption. Changes and modifications to
code should follow the style of the original code.

Production of consistent, well-organised code is made easier
by using appropriate development tools, which can also reduce
the development time. Many programming languages may be
acquired with a suite of tools that include: debugging compilers,

78 BSSC (2002)1 Issue 1.0
 SOFTWARE DESIGN ENGINEERING

source code formatting aids, built -in editing facilities, tools for source
code control, extensive programming libraries of functions, cross-
compilers for specific development environments.

The coding task includes compilation; not only does this
produce the code needed for testing the runtime behaviour of the
module, it is the first step in verifying the code. Compilation normally
produces statistics that can be used for the static analysis of the
module.

Supplementary code included to assist testing should be
readily identifiable and easy to disable, or remove, after successful
testing. Care should be taken to ensure that such code does not
obscure the module logic.

The source code shall be retained, in an appropriate format
for the project, in the design definition file (DDF).

6.3.2.2 Unit Testing

Each software unit shall be tested in accordance with the
unit test documentation. Guidelines for effective testing are
contained in Part B of this Guide. The specific testing for a software
unit shall be determined by the project requirements but the
following aspects should normally be considered:

• The code is traceable to its design, testable, correct and
compliant with the appropriate coding standards

• The code implements the proper event sequence, consistent
interfaces, completeness, appropriate allocation of timing and
sizing budgets, and error definition, isolation and recovery.

Where the code implements safety, security or other critical
aspects, suitable rigorous methods should be used to demonstrate
correct implementation.

The results of the verification activities shall be documented
in the design justification file (DJF).

BSSC (2002)1 Issue 1.0 79
SOFTWARE DESIGN ENGINEERING

6.3.2.3 Software User Manual Updates

The results of the unit test task may require updates to the
software user manual, a component of the technical specification
(TS). This shall be updated as required.

6.3.2.4 Integration Testing Requirements

The integration test requirements and integration plan shall
be updated to be consistent with the results of the detailed design
task. The Software Integration Plan, part of the design justification
file, shall be updated.

6.3.2.5 Evaluation of Code and Test Results

The results of the unit test activities, defined in 6.3.2.2, shall
be evaluated by the supplier. This task requires an assessment of the
suitability of the software items to undergo integration testing.

The guidelines for evaluating the code and test results are
discussed in Part B of this Guide. The extent of the evaluation will
depend on the requirements of the project but an assessment of
the following aspects should be considered:

• Test coverage of units

• Feasibility of software integration and testing

• Feasibility of operation and maintenance

The results of the evaluations shall be documented in the
design justification file (DJF).

6.3.3 Integration

Integration is the activity of building a software product by
combining components into a working entity.

The integration of the software product into the higher level
system requires additional integration. This system level integration
normally takes place after the completion of the Qualification
Review (QR) for the software product, as discussed in Chapter 8.

80 BSSC (2002)1 Issue 1.0
 SOFTWARE DESIGN ENGINEERING

For each software item, this activity consists of the following

tasks:

• Updating of the integration plan

• Integration testing

• Update to the software user manual

• Evaluation of the Integration tasks

• Critical Design Review (CDR)

6.3.3.1 Integration Planning

All integration testing shall be carried out in accordance
with the software integration plan, part of the design justification
file, produced during the Coding and Testing activity. If necessary,
this plan shall be updated to reflect all the lessons learnt from the
evaluation of the software code and test results.

6.3.3.2 Integration Testing

Integration testing is performed according to the Software
Integration Plan. Integration testing is done when the major
components are assembled to build the software product. These
major components are identified in the TS. Integration testing
should verify that the major components interface correctly.

Integration testing must check that all data exchanged
across an interface agree with the specifications.

The results of the integration testing shall be documented in
the Integration Test Report, held in the DJF.

6.3.3.3 Software User Manual Update

The integration testing task may require update to the
software user manual. This shall be updated as required.

BSSC (2002)1 Issue 1.0 81
SOFTWARE DESIGN ENGINEERING

6.3.3.4 Evaluation of the Integration Testing

The supplier shall evaluate the results of the integration
activity. The evaluation shall consider whether the software
components and units have been completely and correctly
implemented into the software product. Guidelines on the
evaluation of the activity are defined on Part B of this Guide. The
exact nature of the evaluation will depend on the project
requirements but consideration should be given to the following
aspects:

• Traceability to the software requirements in the TS

• External consistency with the software requirements

• Internal consistency

• Test coverage of the requirements of the software item

• Appropriateness of test standards and methods used

• Conformance to expected results

• Feasibility of software validation testing

• Feasibility of operation and maintenance

The results of the evaluation of the integration testing
activity shall be documented in the design justification file.

6.3.4 Validation Testing

There are four stages to Validation Testing. The first stage is
performed as part of Software Design Engineering, the other three
stages as part of Software Validation and Acceptance (see section
7.3). The stages are shown in Table 6.1 below.

82 BSSC (2002)1 Issue 1.0
 SOFTWARE DESIGN ENGINEERING

Validation
Performed Against

Name of
Testing Stage

Location &
Platform

Testing
Reviewed

Sometimes
known as

Technical
Specification

Validation
Testing against
Technical
Specification

Supplier
Premises

Critical
Design
Review
CDR

System
Tests (can
also be
carried out
as Factory
Acceptance
Tests: FAT)

Requirements
Baseline Subset

Validation
Testing against
Requirements
Baseline Subset -
1

Supplier
Premises

Qualificati
on Review
QR

Preliminary
Acceptance
Tests. Factory
Acceptance
Tests
(FAT)

Requirements
Baseline Larger-
subset
and optionally a
subset of the
Technical
Specification(2)

Validation
Testing against
Requirements
Baseline Subset -
2

Customer
Premises
on
Developm
ent
Environme
nt

Acceptan
ce Review
AR

Preliminary
Site
Acceptance
Tests
PSAT (1)

Requirements
Baseline (ideally all
requirements) and
optionally a subset of
the Technical
Specification

Validation
Testing against
Requirements
Baseline

Customer
Premises
on
Operation
al
Environme
nt

Acceptan
ce Review
AR

(Final) Site
Acceptance
Tests
SAT (1)

(1) PSAT and SAT are known together as Operational Acceptance Tests

(2) Preliminary site acceptance test can also be carried out against the
technical specification

Table 6.1 Stages of Validation Testing

6.3.5 Critical Design Review

A Critical Design Review (CDR) shall be held at the end of
the design engineering process. The customer shall be invited to
attend the CDR. The aim of the CDR is to ensure the completeness

BSSC (2002)1 Issue 1.0 83
SOFTWARE DESIGN ENGINEERING

of the DDF, software user manual and DJF. The completeness of the
verification and validation plans and the availability of the
necessary supporting resources (e.g. test case specification,
simulators) are reviewed.

The CDR marks the transition of the software system from
the 'Specified State' to the 'Defined State', i.e. the CDR signals the
end of the design. For large software projects, all software
subsystems shall undergo a CDR before they are integrated into the
next highest level in the hierarchy.

The results of the CDR shall be documented in the design
justification file.

It should be noted that the lifecycle chosen for the software
development shall impact on the CDR. If an incremental or
evolutionary lifecycle is chosen, there will be a number of CDRs,
reflecting the lifecycle model.

6.4 PROCESS OUTPUTS

The main outputs from the process are the software
component design, the code and the software user manual. The
documented results of the verification and validation activities are
also outputs of the process.

6.4.1 Design Definition File (DDF)

The following sections shall be added to the DDF.

6.4.1.1 Software Components Design Documents

This shall be formatted as shown in Appendix C. The source
code will normally be included in this section.

6.4.1.2 Software User Manual

The software user manual shall be generated.

84 BSSC (2002)1 Issue 1.0
 SOFTWARE DESIGN ENGINEERING

6.4.2 Technical Specification (TS)

The following section shall be updated in the TS.

6.4.2.1 Interface Control Document (ICD)

This shall be updated to include the additional level of detail
available for both the internal and the external interfaces.

6.4.3 Design Justification File (DJF)

The following sections shall be added to the DJF.

6.4.3.1 Software Unit Test Plan

This document contains the test requirements and plans for
testing the software units.

6.4.3.2 Software Integration Plan

The preliminary plan created during the Software
Requirement Engineering process shall be updated to include the
aspects for integration planning and testing generated during the
Design Engineering process.

6.4.3.3 Software Validation against Technical Specification

The supplier shall develop, for each software item, a set of
tests, test cases (inputs, outputs, test criteria) and test procedures
for conducting software validation testing. This testing is against
the technical specification.

BSSC (2002)1 Issue 1.0 85
SOFTWARE VALIDATION A ND ACCEPTANCE

CHAPTER 7

SOFTWARE VALIDATION AND ACCEPTANCE

7.1 INTRODUCTION

This process validates the Software against the requirements
baseline. The process comprises two parts:

The first part leads to preliminary acceptance and comprises
two activities:

• Preliminary acceptance tests

• Qualification Review

These processes are usually conducted under the control of
the Supplier and are normally carried out at his premises.

The second part leads to final acceptance and comprises
three activities:

• Delivery and Installation

• Operational Acceptance Tests

• Acceptance Review

These activities are normally controlled by the Customer,
and may require the involvement of Operational departments.
Final acceptance triggers the Software Operations Engineering
and Software Maintenance processes.

7.2 PROCESS INPUTS

7.2.1 Requirements Baseline

This is used to prepare the acceptance test specifications.
Each of the functional requirements shall be tested. Requirements
that cannot be tested shall be validated by other means – e.g.
analysis.

86 BSSC (2002)1 Issue 1.0
 SOFTWARE VALIDATION AND ACCEPTANCE

7.2.2 Technical Specification

7.2.2.1 Interface Control Document

This is used to prepare the acceptance test specifications.
The document may be used to prepare a test harness if necessary.

7.2.2.2 Software Requirements Specification

The software requirements specification may be used in
assembling the acceptance test specifications, if testing in the
customer environment is performed against a subset of the
technical specification (see table 6.1).

7.2.3 Design Definition File

7.2.3.1 Software User Manual

This is used to prepare the acceptance test specifications.
At this level most tests will make use of the user interface, which will
be described in the software user manual.

7.3 ACTIVITIES

7.3.1 Validation Testing against RB subset-1

These tests are also sometimes called as Factory
Acceptance Tests (FAT). They are performed at the supplier’s
premises. They comprise a set of tests that check the software
product against a subset (as constrained by use of supplier’s
environment) of its requirements baseline.

7.3.2 Qualification Review

This review checks that the product meets its requirements,
and is ready to be installed and undergo acceptance testing at
customer premises.

BSSC (2002)1 Issue 1.0 87
SOFTWARE VALIDATION AND ACCEPTANCE

7.3.3 Delivery and Installation

The product is delivered to the customer’s site and installed
in the operational environment using the installation procedures.
Installation should be undertaken from scratch to test the
adequacy of the Installation procedure.

The supplier shall train Customer personnel in the use of the
software.

7.3.4 Validation Testing against RB subset-2

These tests are also called Preliminary Site Acceptance Tests
(PSAT). They are performed by the customer at the customer’s
premises on the development environment. They comprise a set of
tests that check the software product against a subset (as
constrained by use of cusomter’s development environment) of its
requirements baseline. They may include a subset of the tests
performed against the technical specification. It is also possible to
carry out these tests only against the technical specification.

The tests shall include the re-generation of executable from
source code, to ensure that the build process is robust. The Supplier
shall support the Acceptance testing process. All problems found
shall be reported on a Non Conformance Report.

7.3.5 Validation Testing against RB

These tests are also sometime called (Final) Site Acceptance
Tests (SAT). They are performed by the customer at the customer’s
premises on the operational environment. They comprise a set of
tests that check the software product against all of its
requirements baseline. They may include a subset of the tests
performed against the technical specification.

Particular tests that may be required as part of operational
validation are:

88 BSSC (2002)1 Issue 1.0
 SOFTWARE VALIDATION AND ACCEPTANCE

• tests with the full ground segment including communications

network

• tests under different load conditions, including the maximum
expected load (e.g. maximum number of user work stations,
high speed telemetry playback, etc.)

• reaction and loading of software in response to on-board
conditions or anomalies

• ground segment failure cases, e.g. switch of the software on to
redundant equipment, reaction to failures of other equipment.

The following tests are typically carried out during ground
segment operations validation:

• Tests with RF suitcase representations of the spacecraft (RF
compatibility testing)

• Tests with a space segment simulator

• Space to ground segment compatibility tests (called System
Validation Tests in some organizations), involving access to the
spacecraft on ground during AIV activities. These ensure
compatibility of space segment and ground segment and may
reveal anomalies on both sides.

The tests shall include the re-generation of executable from
source code, to ensure that the build process is robust. The Supplier
shall support the Acceptance Testing process. All problems found
shall be reported on a Non Conformance Report.

7.3.6 Software User Manual Updates

The results of the validation testing activities may require
updates to the software user manual. This shall be updated as
required.

7.3.7 Acceptance Review

The results of the acceptance tests shall be reviewed by the
Customer. The Supplier shall support the Acceptance Review

BSSC (2002)1 Issue 1.0 89
SOFTWARE VALIDATION AND ACCEPTANCE

process. At the end of the review, the Customer shall indicate the
result of the test in the Acceptance Review Report.

7.4 PROCESS OUTPUTS

7.4.1 Design Definition File

7.4.1.1 Software Installation Plan

This document identifies how the product is to be installed
on the operational environment. It should include instructions on
installing underlying software products and data files, and on
setting up the software environment.

7.4.1.2 Source Code Files, Build Code Files, Executable Code Files

These files provide the mechanism for re-generating the
executable files.

7.4.2 Design Justification File

7.4.2.1 Preliminary Acceptance Test Specification

This document provides the specification for Factory
Acceptance Tests.

7.4.2.2 Preliminary Acceptance Test Results

This document may be a copy of the test specification,
hand marked with test results. The results of each test or group of
tests that is witnessed by or on behalf of Product Assurance or
Customer Personnel shall be signed to provide evidence of
witnessing.

7.4.2.3 Qualification Review Report

This shall provide a record of the Qualification Review
process

90 BSSC (2002)1 Issue 1.0
 SOFTWARE VALIDATION AND ACCEPTANCE

7.4.2.4 Operational Acceptance Test Specification

This document provides the specification for Preliminary and
Final Site Acceptance Tests. (See the validation test specification
template in Part C.)

7.4.2.5 Operational Acceptance Test Results

This document may be a copy of the test specification,
hand marked with test results. The results of each test or group of
tests that is witnessed by or on behalf of Customer Product
Assurance shall be signed to provide evidence of witnessing.

7.4.2.6 Observation Reports

Observation Reports cover unforeseen departures from
planned tests and/or test outcomes that whilst not being a failure
are different from the predicted outcome.

7.4.2.7 Compliance Matrix

The compliance matrix shall be updated to include the
compliance of Acceptance Tests to requirements baseline.

7.4.2.8 Acceptance Review Report

This shall provide a record of the Acceptance Review
process, and shall include a conclusion on the final result of the test.

BSSC (2002)1 Issue 1.0 91
SOFTWARE OPERATIONS ENGINEERING

CHAPTER 8

SOFTWARE OPERATIONS ENGINEERING

8.1 INTRODUCTION

The Software Operations Engineering Process normally starts
after the AR of the software product, although plans for it are
normally finalised before AR. The nature of the software operations
engineering process is determined by the system level need to
operate the software product at a given time. Ground segment
software products are in extensive operational use to qualify the
ground segment, well before the actual mission operation occurs.

The software product is an integrated component of the
overall system. The phasing and management of the operations
process is determined by the system level requirement to operate
the software product at a given time. The Software Operations
Engineering process is, in fact, part of the operations activities for
the overall system. In principle, operations engineering starts a the
time of the Operational Readiness Review (ORR). In practice, it will
start earlier, because ground segment software products are in
extensive use to qualify the ground segment and interfaces to the
space segment well before operations occur. On the other hand
some software may not be operational until long after launch, for
example in a deep-space mission. This process is concerned only
with providing a software input into the system level activities of
space system operations engineering. All activities specified here
are, therefore, not specific to software but rather form an integral
part of the operation of the space segment.

The Software Operations Engineering process relates to the
operator. The customer is responsible for establishing the system
requirements for the operation of software products. The customer
is responsible for the selection of the operator, i.e. the supplier who
performs the operations process.

92 BSSC (2002)1 Issue 1.0
 SOFTWARE OPERATIONS ENGINEERING

The Software Operations Engineering process is closely linked

to the Software Maintenance process, described in Chapter 9. The
operator is responsible for identifying problems, or potential
problems, with a software product. Resolution of these problems is
described in software maintenance and is the responsibility of the
maintainer.

The generic organisational model used in the process
descriptions assumes that operators operate the system on behalf
of users of the system. In practice, operators and users may be the
same, although two different roles are distinguished here.

There is in fact a hierarchy of relationships: software support
provides a service to computer/network operations, which provides
a service to the operator of the applications, who in turn provides a
service to the end users of those applications (see diagram
opposite). The precise mapping of the generic roles onto the
organisation is dependent on the mission requirements and the
operations organisation.

8.2 PROCESS INPUTS

The input into this process is the approved software product
from the Acceptance Review.

8.3 PROCESS ACTIVITIES

The Software Operations Engineering process, to provide
software specific input into the system level process, is undertaken
by participation in the following activities:

BSSC (2002)1 Issue 1.0 93
SOFTWARE OPERATIONS ENGINEERING

• Operational planning

• Operational testing (of new releases)

• System operation

• User support

8.3.1 Operational Planning

This activity is concerned with the development, by the
operator, of the software operations plan. The software operations
plan contains the operator’s standards for operational testing,
software operation and user support.

94 BSSC (2002)1 Issue 1.0
 SOFTWARE OPERATIONS ENGINEERING

Users

Spacecraft operations Simulator operations

Network operations Computer operations

Software support

User

Operator

Maintainer

Applications

Infrastructure

A B

A relies on services from B

KEY

Figure 8.1: User-operator-maintainer relationships

BSSC (2002)1 Issue 1.0 95
SOFTWARE OPERATIONS ENGINEERING

The procedures developed for this plan will be used by the

operator of the software product. The plan shall contain the
following information:

8.3.1.1 Procedures for Anomaly Handling

The operator shall establish procedures for receiving,
recording, resolving and tracking anomalies and for providing
feedback. An anomaly may be raised when a departure from
expected behaviour occurs. It shall be analysed to determine
whether

• the actual behaviour is valid (and thus the expected behaviour
is incorrect) or

• alternatively the expected behaviour is correct and the actual
behaviour constitutes a problem.

Anomaly handling is addressed in the ECSS-M-40 standard
[Ref. 7]. Guidance on the application of these mechanisms is
described in Part B – Section 4.4.9 – Software Problem Reporting.

It should be noted that these procedures are similar to those
used by the maintainer of a software product. The principal
difference is that the operational procedures relate to the
identification and tracking of operational anomalies. The
maintenance process (Chapter 9) deals with the actual
investigation and change of the software product.

8.3.1.2 Operational Testing Specifications

The operator shall where necessary update and amend the
existing procedures for testing new releases of the software product
in its operational environment. Depending upon the type of
maintenance that occurs the testing procedures (usually part of
the Acceptance Tests) are used as follows.

96 BSSC (2002)1 Issue 1.0
 SOFTWARE OPERATIONS ENGINEERING

• Corrective maintenance – use procedures unchanged

• Perfective maintenance – amend procedures

• Adaptive maintenance – amend procedures

These procedures shall include details of the approach to,
and test cases used, in regression testing new releases.

These procedures shall also address the mechanism for
releasing the revised software product for operational use, in
accordance with the change control mechanism.

The requirements for change control are identified in ECSS-
M-40 [Ref. 7]. Guidelines of their application to software operational
testing is described in Part B of this Guide.

8.3.2 Operational Testing

For each release of the software product, the operator shall
perform operational testing. The software product shall be released
for operational use when the operational testing criteria have been
satisfied, in accordance with the operations test plan in the
software operations plan.

The mechanism for release and evaluation of each software
release is described in Part B of this document. In normal practice,
the test documentation developed during the acceptance
process can be used during this activity.

8.3.3 System Operation

The system is operated in its intended environment
according to procedures written by those responsible for the
various operations of the system (e.g. computer operations,
network operations, simulator operations and spacecraft
operations). Feedback information for software maintenance, e.g.
appropriate logs or reports, should be identified in the operations
procedures.

BSSC (2002)1 Issue 1.0 97
SOFTWARE OPERATIONS ENGINEERING

8.3.4 User Support

The operator shall provide assistance and consultat ion to
the users as requested. These requests and subsequent actions shall
be recorded and monitored.

The operator shall record and acknowledge all user requests,
forward all appropriate user requests to the Maintenance Process
(Chapter 9) for resolution, monitor their resolution to a conclusion
and report back to the originator of the request.

Temporary work-arounds may be used subject to the
agreement of the originator of the problem report and in
accordance with defined plans and procedures. All permanent
corrections, releases containing new functionality and system
improvements shall be undertaken in accordance with the
Maintenance Process (Chapter 9).

In practice user support often takes the form of a help desk,
with availability according to the mission needs (e.g. during several
working hours with call-out at other times). Typically, members of
the same team that carry out software maintenance provide this
user support. In this case it maps to what is often called “first -line
maintenance”.

During critical operations, for example during a Launch and
Early Orbit Phase (LEOP), a software support team reporting to a
software coordinator will be on shift. They will operate the software
in the sense of monitoring its performance, restarting it or
reconfiguring it on request and giving advice to the end user.

98 BSSC (2002)1 Issue 1.0
 SOFTWARE OPERATIONS ENGINEERING

8.4 PROCESS OUTPUTS

The following are output from the Software Operations
Engineering Process:

8.4.1 Software Operations Plan

The software operations plan contains the operational
standards for performing the operational process, the procedures
for problem handling and operational testing specifications.

BSSC (2002)1 Issue 1.0 99
SOFTWARE MAINTENANCE

CHAPTER 9

SOFTWARE MAINTENANCE

9.1 INTRODUCTION

This process is activated when the software product requires
modification to its code and its associated documentation. The
modification may be required either due to a problem or by the
need for improvement or adaptation. The objective of
maintenance is to modify an existing software product while
preserving its integrity.

The Software Maintenance process is started after the
completion of the Acceptance Review (AR).

As in the case of Software Operations Engineering, the
Software Maintenance process is not software-specific but is in fact
associated with the system level processes. The outputs of the
process are contributions to the system level outputs and the
actual format will depend on the system level requirements.

The Software Maintenance process provides the framework
for the management of change to a software product. Software
maintenance always result s in a change to a software product. The
actual change to the product may require the initiation of any of
the life cycle processes defined in this guide i.e. system engineering,
requirements engineering, design engineering and verification and
validation. The processes invoked, and the extent to which they
are applied, will depend on the nature of the change.

A maintenance organisation, the maintainer, shall be
designated for every software product in operational use. In the
case where the software development processes are invoked by
the maintenance process, the term supplier is taken to mean the
maintainer.

100 BSSC (2002)1 Issue 1.0
 SOFTWARE MAINTENANCE

The Software Maintenance process may include the

migration of the software product to different operational
environments. The Software Maintenance process ends with the
retirement of the software product.

The Software Maintenance process is closely linked to the
Software Operations Engineering process, described in Chapter 9.
Problems identified with the operation of a software product are
passed, by the operator, to the maintainer for investigation and
change. The operator and maintainer must work in collaboration to
ensure the effective change to the operational software product.

9.2 PROCESS INPUTS

The following are input to the software maintenance
process:

• All software problem reports

• All change requests

• All documentation required to undertake an investigation of a
change request

• All documentation requiring change

These problems are normally passed to the maintainer as a
result of operator support to the user. The format of the reports will
be subject to the agreement of the operator and the maintainer.

9.3 PROCESS ACTIVITIES

The Maintenance Process consists of the following activities:

BSSC (2002)1 Issue 1.0 101
SOFTWARE MAINTENANCE

• Problem and Modification Analysis

• Modification Implementation

• Maintenance Review/Acceptance

• Software Migration

• Software Retirement

The maintainer shall develop documented procedures for
undertaking the above activities. These documented procedures
are normally referred to as a Maintenance Plan

The maintainer shall include in the Maintenance Plan those
document procedures for receiving, recording and tracking
problems and modification requests from the operator. A key
element of this problem control mechanism is the need to provide
feedback to the operator of the product.

More detailed guidance on the scope of these procedures is
given in Part B of this document. This addresses aspects such as the
format of problem reporting and change control forms and the
approval mechanisms for software changes.

9.3.1 Problem and Modification Analysis

All reported software problems or modification requests shall
be examined prior to any amendment. Only approved changes
shall be implemented.

The key aspect of problem analysis activity is to find the root
cause of the problem and the impact of the problem on the
operation of the system.

The initial aspect of the activity shall be to determine
explicitly the type of problem reported. The following types of
request shown in Table 9.1 shall be used.

Type Meaning

102 BSSC (2002)1 Issue 1.0
 SOFTWARE MAINTENANCE

Corrective
Maintenance

Changes to correct an error in the operation or a
function of the system

Improvement
(“perfective
maintenance
”)

Provision of new or improved functionality

Preventive
Maintenance

Changes to prevent fault occurrence in the
product

Adaptive
Maintenance

Migration of product to a new environment

Table 9.1 Maintenance Types

All of the above maintenance types will initially be
activated by the operator/maintainer interface. An initial analysis
shall be undertaken of the reported problem to determine the
scope of the change required. The scope shall consider aspects
such as the size of the modification, the cost involved and the time
to modify.

All requests shall be prioritised in terms of the following
aspects:

• Operations needs

• Risk, e.g. in the case of complex change

• Effort required to implement request

The change should also be assessed against its likely impact
on either the software behaviour or the maintenance budget. The
importance of the request can be different from the nature of the
change. For example, a problem with an important functional
aspect of the product may be rectified by a relatively simple
change to the code. In the case of reusable or infrastructure
software (see chapter 10), the impact on all the projects using the

BSSC (2002)1 Issue 1.0 103
SOFTWARE MAINTENANCE

product must be considered. This may involve obtaining approval
of all those involved with the reusable or infrastructure software.

The maintainer shall attempt to reproduce the problem and
understand why it happened. This can be used to assist in
examining options for changing the product. There may be a
variety of options for resolving a problem, each with associated
advantages and disadvantages.

The results of this analysis shall be fully recorded in the
Maintenance File.

Prior to implementing any modification to the system, the
maintainer shall obtain approval from the operator for the selected
option. The format of this approval process is discussed in Part B of
this Guide.

9.3.2 Modification Implementation

The maintainer shall identify all software items requiring
change, the extent of the change and the likely cost. The
identification shall include documentation, software units and
specific versions. The identification shall be recorded in the
Maintenance File (MF).

All modifications are undertaken in accordance with the
software engineering processes specified in this document. The
software engineering process shall be entered at a point consistent
with the scope of the approved change.

The following additional requirements shall be addressed.

9.3.2.1 Test Criteria

Test and evaluat ion criteria for testing and evaluating the
modified and unmodified parts of the product shall be defined and
documented.

104 BSSC (2002)1 Issue 1.0
 SOFTWARE MAINTENANCE

9.3.2.2 Implementation

Regression testing shall be undertaken to ensure the
complete and correct implementation of the system. The regression
testing shall ensure that the unmodified requirements were not
affected. The results of all regression testing shall be documented.

9.3.3 Maintenance Review/Acceptance

The supplier shall conduct the appropriate joint reviews with
the operator to ensure the integrity of the modified system.
Agreement of the modification shall constitute a new baseline for
the product.

Acceptance testing of the change shall be performed as
per section 8.3.2 – Operational Testing.

The baseline for the changes shall be recorded in the
maintenance file.

The maintenance review/acceptance mechanism is more
fully described in Part B of this document.

9.3.4 Software Migration

Software migration is the activity of transferring a software
product from one operational environment to another. This
migration may be required due to a change to the underlying
hardware platform or to the operating system being used. Other
software products or elements within a subsystem or system may
also have been changed, thus requiring the software product to
be migrated to a new operational environment.

Software migration may require changes to the software
product. All such changes shall be undertaken in accordance with
the development processes specified in this guide.

All migration activities shall be documented in a migration
plan. The plan shall cover the following requirements:

BSSC (2002)1 Issue 1.0 105
SOFTWARE MAINTENANCE

• Requirements analysis and definition of migration

• Development of migration tools

• Conversion of the software product

• Migration execution

• Migration verification

• Support for the old environment

• User and operator involvement in the activities, plus
explanation (e.g. for parallel operation extra manpower may be
needed).

Users shall be given notification of the migration activities.
The migration justification included in the migration plan shall
contain the following information:

• Statement of why the old environment can no longer be
supported

• Description of the new environment with its date of availability

• Description of other support options available, if any, once
support for the old environment has been removed

Parallel operation of the old and new systems, for a specified
time, may be required. Any required training for this activity, e.g. for
operations, will be defined in the Migration Plan.

All those concerned with the operation of the system shall
be informed when the migration takes place. All records relating to
the old system shall be archived, subject to the requirements for
parallel running.

A review shall be performed to assess the impact of
changing to the new environment. The result of the review shall be
sent to the appropriate authorities for information, guidance and
action. Further guidance on this review is given in Part B of this
document.

106 BSSC (2002)1 Issue 1.0
 SOFTWARE MAINTENANCE

9.3.5 Software Retirement

Software retirement normally refers to the complete disposal
upon customer’s request of a software product, but there are
situations when a temporary retirement of a software product
takes place.

This temporary retirement, known as software mothballing or
hibernation, is used for operational reasons, such as when a
software product is completed but the system for which it is a part
is not completed until a later date. Another instance of
mothballing is when the software product is complete but the
operations for which it is intended is not available.

When software mothballing is required, the following aspects
shall be documented:

• Identification and archiving of all component parts

• Staff training and hand-over requirements, both now and later

• Re-activation mechanism, especially in relation to availability
and interface testing of the software

• Testing specifications

An important aspect of this is that testing at the time of
mothballing may be required. This testing may require independent
staff.

The timescale for software mothballing may have
implications on the underlying infrastructure. Changes have
occurred to the hardware or the operating system. Any changes to
the product as a result of this should be handled in accordance
with the Software Migration procedures.

The permanent retirement of a software product shall only
start after a decision by the customer on the basis of a Retirement
Plan and with the collaboration of all those concerned with the
product.

BSSC (2002)1 Issue 1.0 107
SOFTWARE MAINTENANCE

The retirement shall result in the co-ordinated and controlled

performance of the operations necessary for the total or partial
cessation of use of the software product.

The retirement of the software product shall be executed in
accordance with all legal and administrative procedures
applicable to the organisation and the product.

9.4 PROCESS OUTPUTS

The following are output from the process:

9.4.1 Maintenance File (MF)

The following sections will be updated in the MF.

9.4.1.1 Problem Analysis Report

All documentation relating to all software change requests
shall be recorded. The problem analysis report shall:

• Identify the software (name, version)

• State the criticality of the problem (major/minor)

• Identify the problem (by reference to the problem report)

• Describe the cause of the problem

• Propose actions to rectify the problem

• Describe the resources required to implement the actions

9.4.1.2 Software Release Note

All information relating to each baseline shall be recorded.
The following shall be defined when a new baseline is released:

108 BSSC (2002)1 Issue 1.0
 SOFTWARE MAINTENANCE

• The identity of the software (name, version)

• Changes implemented in the release (reference to the problem
report)

• Configuration items included in the release

• Installation instructions

9.4.2 Maintenance Plan

The maintenance plan describes the procedures for
conducting the activities and tasks of the Maintenance Process.

The procedures for receiving, recording and tracking
problem reports and modification requests are also defined.

9.4.3 Migration Plan

The migration plan defines the details for moving a software
product from one environment to another.

The migration plan is a system level document, not specific
to software.

9.4.4 Migration Justification

The migration justification provides users of a software
product with the details of why the old environment is no longer to
be supported and the details of the new environment. The support
requirements during the transition are also recorded.

BSSC (2002)1 Issue 1.0 109
SOFTWARE MAINTENANCE

This page is intentionally left blank

110 BSSC (2002)1 Issue 1.0
 SOFTWARE RE-USE

CHAPTER 10

SOFTWARE RE-USE

10.1 INTRODUCTION

Software re-use holds the promise of major cost and time
saving on software developments. The other major benefit of re-
using software is that the quality of software products should
increase by applying previously tested software components.

Software re-use shall be encouraged whenever possible. It
should be considered, however, that the application of re-use
requires management support. This is particularly true when
developing re-usable software, which will probably require a
greater cost.

The Software Re-use process establishes the basis of control
when:

• It is intended to develop software products for intended re-use
on other projects

• It is intended to re-use software products from other projects

• Third party COTS products are to be incorporated into a
product

• Public domain or open source software is incorporated into a
product

Key elements in the re-use approach are the costs of
developing reusable software and the facilities for identifying
reusable components. There are likely to be additional costs
involved in the verification and validation of potentially re-usable
components, while the adoption of re-usable components should
have a beneficial effect on project quality, cost and time scale.

BSSC (2002)1 Issue 1.0 111
SOFTWARE RE-USE

10.2 PROCESS INPUTS

There is no specific input into the process. The Software Re-
use process is not undertaken in isolation but is an integral part of
the software development lifecycle. In particular, the Re-use
activities identified here should be applied during the Systems
Engineering and Software Requirements Engineering processes.

Re-use may be required either by the customer or the
developer. The specification may be for business reasons, such as to
develop libraries for future work, or may be required to reduce time,
cost or risk on a particular project. It may also be provided to
impose a common 'look and feel', or a set of functionality across
different projects in order to reduce training costs and promote
operator mobility.

10.3 ACTIVITIES

10.3.1 Developing Software for Intended Re-use

This activity is primarily concerned with the identification of
software requirements, from the customer domain, that may be
used in future applications. The specification of software
requirements for intended re-use in this way is normally at the
request of the customer. The supplier must ensure that these
requests are addressed at each of the key development processes.
In addition, the supplier may require the identification of software
requirements for which re-use might be possible in future
applications.

10.3.1.1 Customer Requirements

The customer shall specify any special re-use constraints,
that apply to the development, to enable future re-use of the
software. These shall be documented in the requirements baseline.

The aim of this is to identify aspects of the customer's generic
application domain that are suitable for potential re-use. This may

112 BSSC (2002)1 Issue 1.0
 SOFTWARE RE-USE

include requirements on the software architecture for specific
target computers or operating systems.

The supplier should seek ways of identifying generic aspects
of an application domain whenever possible, even if not specified
by the customer. The use of techniques addressing these aspects is
recommended.

10.3.1.2 Supplier Requirements

The supplier shall define procedures, methods and tools to
support the development of re-usable software. These procedures,
methods and tools must be applied during the software
development processes to ensure that all re-use requirements are
adequately addressed.

The implementation of the re-use requirements shall be
formally evaluated at the PDR and CDR milestones.

The requirements for configuration management and re-use
items shall be documented, along with any specific design
documentation.

10.3.2 Re-using Software from Other Projects

The supplier shall consider the re-use of previously developed
software, including commercial off-the-shelf software, if required by
the customer. In the case where the customer has placed no
specific requirements for re-use, the supplier should also consider the
possible benefits to be obtained through the re-use of previously
developed software.

The supplier shall document the specification of intended re-
use requirements in the technical specification (TS). The results of
the evaluation shall be documented in the design justification file.

There are a number of conditions for considering re-using
software from other projects that are described in ECSS-Q0-80 [Ref.
10]. For details of this process please refer to Part B of this Guide.

BSSC (2002)1 Issue 1.0 113
SOFTWARE RE-USE

10.3.3 Use of Third Party COTS Products

Commercial off-the-shelf software (COTS) shall be specified
by the customer in the requirements baseline. The customer shall
document the acquisition requirements for COTS in the RB.

 The supplier shall implement the software acquisition
process and document the process in the Software Development
Plan.

Where an appropriate COTS product can be shown to meet
project requirements, the supplier should consider its use. This is in
addition to any requirements placed by the customer. The
requirements of the software product may need some revision to
suit a chosen COTS product. These changes need to be discussed
and agreed with the customer. The supplier shall record the
evaluations of all investigated COTS products in the design
justification file (DJF), along with the reasons for selection of a
particular COTS.

The software procurement process for COTS has to pay
special attention to:

• Economic soundness of the supplier

• Past experiences with this supplier

• Supplier ‘s capability to provide support and maintenance and
also the cost of this maintenance

• Access to good quality documentation and source code (this is
essential for critical software)

• Licensing and intellectual property rights. Consistency with
product assurance and verification and validation
requirements is particularly relevant.

• Suitability of the product for its intended use.

[Ref. 10] (section 5.6) provides some guidance regarding
product assurance requirements for the purchase of software
products. The previous paragraphs also apply to Off-the-Shelf

114 BSSC (2002)1 Issue 1.0
 SOFTWARE RE-USE

Software (OTS) and Modified Off-the-Shelf Software (MOTS). Public
domain and open source software can be treated in a similar
manner bearing in mind that:

• Supplier maintenance may be non-existent.

• The intellectual property issues may be difficult to handle. The
GNU General Public License (GPL), for example, requires any
product incorporating open source code to be put under the
same license (note that this license does not apply to all GNU
products).

10.4 PROCESS OUTPUTS

The outputs of this process are additions to the normal
contents of the following process documents.

10.4.1 Requirements Baseline

The requirements baseline produced by the customer shall
contain the following aspects related to software re-use:

• reuse requirements

• software acquisition process for COTS

The customer organisation may well have a general COTS
acquisition process in place, which should be referenced. This
general process will typically include aspects such as:

• Identification of specific products

• number of licenses

• type of licenses (development, run-time)

In addition, the following aspects should be considered
when acquiring COTS products:

BSSC (2002)1 Issue 1.0 115
SOFTWARE RE-USE

• proprietary, usage, ownership, warranty and licensing rights are

satisfied

• future support for the product is planned

10.4.2 Technical Specification

The technical specification produced by the supplier shall
contain the following additional item related to software re-use:

• specification to achieve the required re-use

10.4.3 Software Development Plan

The Software Development Plan produced by the supplier
shall contain the following additional item related to software re-
use:

• software acquisition approach, including justification of
selected COTS where appropriate

10.4.4 Design Justification File

The DJF shall incorporate the following additional
information for the requirements of software re-use:

• Justification of methods and tools

• Justification of any COTS selected

• Evaluation of re-use potential, when existing software is
considered for re-use

• Software user manual aspects relating to possible re-use

116 BSSC (2002)1 Issue 1.0
 SOFTWARE RE-USE

This page is intentionally left blank

BSSC (2002)1 Issue 1.0 117
MAN-MACHINE INTERFACES

CHAPTER 11

MAN-MACHINE INTERFACES

11.1 INTRODUCTION

The man-machine interface requirements will vary
according to the type of software under consideration. For
interactive systems, the users may wish to provide examples of the
dialogue that is required, including the hardware to be used (e.g.
keyboard, mouse, colour display, etc) and assistance provided by
the software (e.g. online help).

Modern MMI technology (e.g. graphical user interfaces,
multi-layered choice menus) does not lend itself to conventional
software engineering documentation. The use of the technique of
software prototyping, as an aid to the development of mock-ups of
the MMI and assessment of the suitability of the MMI, is a key
element in ensuring that appropriate MMI are provided.

The specific requirements for MMI must be addressed early in
the project, utilising the most appropriate techniques and, where
necessary, ensuring that suitable MMI expertise is available.

11.2 PROCESS INPUTS

There is no specific input into this process. Consideration of
the MMI is not a separate activity but rather a key part of the
System Engineering for Software process, by the customer, and the
Software Requirements Engineering process by the supplier. The key
requirement is of the MMI process is to gain an understanding of
the importance of the MMI aspects to the successful operation of
the system.

118 BSSC (2002)1 Issue 1.0
 MAN-MACHINE INTERFACES

11.3 PROCESS ACTIVITIES

There are three principal activities concerned with this
process:

• Determine Prototyping requirements

• Determine MMI standards

• Supplier Consideration of MMI Aspects

11.3.1 Determine Prototyping Requirements

The customer shall evaluate the requirements of the
software product to determine the specific need for MMI
requirements. In particular, the customer shall consult with the
supplier to determine if a software prototype, addressing the
specific aspects of the user interface, is required and the scope of
such a prototype.

The requirements for such a prototype shall be documented
in the RB.

11.3.2 Determine MMI Standards

There are many possible styles and approaches to
generating the user interface. The customer, or a particular
operational environment, may constrain the approach used.

As in all areas of requirements engineering, it is important to
ensure that the user interface requirements are properly addressed.
An inappropriate user interface can lead to user rejection of an
otherwise perfectly acceptable system.

Consistency of user interfaces is particularly important when
different suppliers develop components of a system.

The customer shall ensure that all requirements for the user
interface are fully addressed and specified in the requirements
baselines. Tables 12.1 and 12.2 give guidelines on aspects that
should be considered.

BSSC (2002)1 Issue 1.0 119
MAN-MACHINE INTERFACES

11.3.2.1 General Guidelines

The general guidelines given in Table 11.1 on the MMI should
be considered:

120 BSSC (2002)1 Issue 1.0
 MAN-MACHINE INTERFACES

Guideline Meaning

Consistency A consistent format for aspects such
as menu selection and command
input e.g. consistent use of SAVE.

Meaningful feedback Operator provided with visual and
auditory feedback to assist two-way
communication

Checks over destructive
tasks

For irreversible tasks, such as file
delete, confirmation messages should
be used

Easy reversal of actions
(undo)

Reversal of operator actions should
be available. Interruption of incorrect
actions

Reduce user memory
requirements

Need for user to remember
information should be minimised.

Efficiency of operation Aspects such as number of keystrokes,
mouse travel distances and meaning
of messages should be addressed.
Minimise number of open windows.

Categorisation Displays should provide logically
related material

Help facilities Context sensitive help facilities should
be provided e.g. specific help on a
particular screen.

Minimise commands Simple action verbs or short verb
phrases should be used to name
commands

Table 11.1 General MMI Properties

BSSC (2002)1 Issue 1.0 121
MAN-MACHINE INTERFACES

11.3.2.2 Information Display Guidelines

The customer should consider the guidelines given on display
options in Table 11.2.

Guideline Meaning

Relevant Displayed information should be
relevant to the current context

Easily Assimilated Present data in a format that the
operator is able to absorb easily e.g.
graphics

Consistency Labels, abbreviations and colours
should be consistent and as
expected e.g. red for warnings

Maintain visual context Graphical representations should be
capable of scaling, to allow operator
to maintain a relative location of the
image

Format of text Upper and lower case, indentation
and grouping should be organised to
assist assimilation by the operator

Use of windows Windows should be used to
compartmentalise different types of
information

Appropriate displays In many instances, graphical
representations of data are
preferential to tables of data

Table 11.2 Display Properties

122 BSSC (2002)1 Issue 1.0
 MAN-MACHINE INTERFACES

11.3.3 Supplier Consideration of MMI Aspects

Prototypes are a common engineering practice to test
customer reaction and design ideas. A software prototype
implements selected aspects of proposed software so that testing,
the most direct kind of verification, can be performed. The
prototyping approach is very useful for assessing elements of the
user interface.

Building a prototype for the MMI aspects, which is also
known as a mock-up, allows the assessment of the suitability and
appropriateness of the MMI solution.

An MMI prototype is normally built quickly and easily. Such
prototype development may relax the quality, reliability,
maintainability or safety requirements that are used in producing
the final software product. MMI prototype software is therefore
normally 'pre-operational' and is not normally part of the delivered
system. There may be cases, however, when the MMI prototype will
be upgraded to become part of the software product. In these
cases, the prototype shall be subjected quality, reliability,
maintainability or safety procedures as the rest of the software
product.

 Where specified in the RB, the supplier shall develop
software prototypes in support of The Requirements Engineering
process. The aim of the prototype is to ensure that MMI
specifications are consolidated and evaluated with respect to
human factors and use.

The prototype should ensure:

• Proper consideration of human factors

• The MMI aspects reach an acceptable level of definition

• The technical performance of the MMI is verified.

The supplier shall also consider the guidelines in Tables 11.1
and 11.2 when implementing any aspects of the MMI. The MMI for

BSSC (2002)1 Issue 1.0 123
MAN-MACHINE INTERFACES

the software product shall be defined in the technical specification.
The results of the evaluation of the prototype shall be documented
in the design justification file.

11.4 PROCESS OUTPUTS

The principal output of the MMI process is the addition of
man-machine interface requirements to the outputs of the System
Engineering and Requirement Engineering processes.

11.4.1 Requirements Baseline

The customer shall include the specification of man-machine
interface requirements in the requirements baseline. In particular,
any requirements relating to the use of software prototypes shall be
specified.

11.4.2 Technical Specification

The specification of MMI requirements shall be added to the
TS.

11.4.3 Design Justification File

The DJF shall contain the results of the evaluation of the
software prototype.

BSSC (2002)1 Issue 1.0 A-1
APPENDIX A GLOSSARY

APPENDIX A GLOSSARY

DEFINITIONS

Operational Software

Operational software is any software used in operating the
space system that can be traced back to requirements in the
requirements baseline.

Non-operational Software

Non-operational software is any other software, which could
include test scripts, test programs and simulators. Simulators would
become operational in the event that they are included in
operational processes, for example to check command sequences
or operational procedures, as an essential step before carrying out
the operations.

ABBREVIATED TERMS

The following additional acronyms are used:

AR Acceptance Review
BSSC Board for Software Standardisation and

Control
CASE Computer Aided Software Engineering
CDR Critical Design Review
COTS Commercial Off-the-Shelf Software
CPU Central Processor Unit
DDF Design Definition File
DJF Design Justification File
ECSS European Cooperation for Space

Standardisation
EGSE Electrical Ground Support Equipment
ESA European Space Agency
ESOC European Space Operations Centre

A-2 BSSC (2002)1 Issue 1.0
 APPENDIX A GLOSSARY

FAT Factory Acceptance Tests
GCS Ground Communication Sub-net
GSCDR Ground Segment Critical Design Review
GSPDR Ground Segment Preliminary Design Review
GSRR Ground Segment Requirements Review
GSTS Ground Station System
GSTVVRR Ground Segment Technical Verification and

Validation Review
HCI Human Computer Interface
ICD Interface Control Document
IRD Interface Requirement Document
IOQR In-Orbit Qualification Review
ISO International Standards Organisation
LEOP Launch and Early Orbit Operations
MCOR Mission Close-Out Review
MCS Mission Control System
MES Mission Exploitation System
MMI Man-Machine Interface
MOTS Modified Off-The-Shelf Software

OTS Off-the-Shelf Software
PCS Payload Control System
PDR Preliminary Design Review
PSAT Preliminary Site Acceptance Tests
PSS Procedures, Standards and Specifications
QR Qualification Review
RAM Random Access Memory
RB Requirements Baseline
RF Radio Frequency
SAT Site Acceptance Tests
SPR Software Problem Report
SRB Software Review Board
SRR System Requirements Review
SUM Software User Manual
SVF Software Validation Facility
SWRR Software Requirements Review
TS Technical Specification

BSSC (2002)1 Issue 1.0 B-1
APPENDIX B REFERENCES

APPENDIX B REFERENCES

1. Information Technology Software Life Cycle Processes ISO/IEC 12207:1995.

2. ECSS-P-001 Glossary of Terms June 1997

3. ECSS-M-00 Policy and Principles April 1996

4. ECSS-M-10 Project Breakdown Structures April 1996

5. ECSS-M-20 Project Organisation April 1996

6. ECSS-M-30 Project Phasing and Planning April 1996

7. ECSS-M-40 Configuration Management April 1996

8. ECSS-M-50 Information/Document Management April 1996

9. ECSS-M-60 Cost and Schedule Management April 1996

10. ECSS-Q-80 Software Product Assurance Issue B

11. ECSS-E-40 Space Engineering: Software, Issue B

12. ISO 9000-3:1997 Guidelines for the application of ISO 9001:1994 to the
development, supply, installation and maintenance of computer software

13. ECSS-E-70 Space Engineering : Ground Systems and Operations, Part 1:
Principles and Requirements, April 2000

14. ISO 9126 Information Technology – Software product evaluation - Quality
characteristics and guidelines for their use

15. ECSS-E-00 Space Engineering: Policy and Principles April 1996

16. ECSS-E-10 Space Engineering: System Engineering April 1996

17. BSSC C/C++ Coding Standard, BSSC99(1), Issue 1

18. BSSC Ada Coding Standard, BSSC98(3), Issue 1

B-2 BSSC (2002)1 Issue 1.0
 APPENDIX B REFERENCES

19. ECSS-E-40-3 Space Engineering: Ground Segment Software, Issue 1.0 Draft,

September 2000

20. ECSS-E40-DRD Software - Document Requirements Definitions Issue 1 Draft
1 May 2000

21. ECSS-Q-00A Policy and Principles April 1996

22. ECSS-Q-20A Quality Assurance April 1996

23. SPEC/TN3 Issue:3.0 Draft A 5 November1999

24. PSS-05-0 Software Engineering Standards, October 1992

25. PSS-05-0 Software Engineering Guides, May 1995

26. ECSS-M-00-02 A Tailoring of Space Standards, April 2000

27. ECSS-M-00-03 A Risk Management, April 2000

28. ECSS-E-40-4 Space Engineering: Software Lifecycles, Issue 1.0 Draft

BSSC (2002)1 Issue 1.0 C-1
APPENDIX C DOCUMENT LIFECYCLES

APPENDIX C DOCUMENT LIFECYCLES

Documents are shown in the order in which their templates appear in Part C.

Lifecycle

Sofware Requirements
Engineering

Software Design
Engineering

Software Validation and
Acceptance File

key
at
end

Document
italics means
template not
available

Purpose System
Engineering
for Software

S
R
R

Software
Requirement

s Analysis

S
W
R
R

Software
Architectural

Design

P
D
R

Design,
Coding and

Testing,
Integration

Validation
against

Technical
Specification

C
D
R

Preliminary
Acceptance

Tests

Q
R

Delivery,
Installation

and
Operational
Acceptance

Tests

A
R

Software
Operations

Engineering /
Software

Maintenance

RB Interface
Requirements
Document

Customer defines
software interface
requirements

Completed
(then

maintained,
under change

control)

RB System
Specification

Customer defines
software
requirements

Completed
(then

maintained,
under change

control)

MGT Software
Development
Plan

Supplier addresses
management
requirements

Drafted Overall plan
updated;

detailed plans
for

architectural
design activity

 Overall plan
updated;

detailed plans
for software

design
engineering

 Overall plan
updated;

detailed plans
for software
validation and
acceptance

DJF Software
Verification
Plan

Supplier defines
arrangements for
review activities

Drafted Updated Updated Updated Updated

C-2 BSSC (2002)1 Issue 1.0
 APPENDIX C DOCUMENT LIFECYCLES

Lifecycle

Sofware Requirements
Engineering

Software Design
Engineering

Software Validation and
Acceptance File

key
at
end

Document
italics means
template not
available

Purpose System
Engineering
for Software

S
R
R

Software
Requirement

s Analysis

S
W
R
R

Software
Architectural

Design

P
D
R

Design,
Coding and

Testing,
Integration

Validation
against

Technical
Specification

C
D
R

Preliminary
Acceptance

Tests

Q
R

Delivery,
Installation

and
Operational
Acceptance

Tests

A
R

Software
Operations

Engineering /
Software

Maintenance

DJF Software
Validation Plan

Supplier defines
arrangements for
validation testing
activities (normally
against TS)

Drafted Maintained Maintained Finalised

DJF Acceptance
Test Plan
(Software
Validation Plan
template)

Customer defines
how acceptance tests
will be performed

 Finalised Maintained

TS Interface
Control
Document

Supplier defines
details of software
interfaces

Drafted Finalised Maintained Maintained

TS Software
Requirements
Specification

Supplier defines
software
requirements in
response to customer
requirements

Drafted Finalised

DDF Software User
Manual

Supplier describes
what software does
and how to achieve it

 Created Maintained Maintained Maintained

DDF Software
Architectural
Design

Supplier defines top-
level design

 Created Maintained

BSSC (2002)1 Issue 1.0 C-3
APPENDIX C DOCUMENT LIFECYCLES

Lifecycle

Sofware Requirements
Engineering

Software Design
Engineering

Software Validation and
Acceptance File

key
at
end

Document
italics means
template not
available

Purpose System
Engineering
for Software

S
R
R

Software
Requirement

s Analysis

S
W
R
R

Software
Architectural

Design

P
D
R

Design,
Coding and

Testing,
Integration

Validation
against

Technical
Specification

C
D
R

Preliminary
Acceptance

Tests

Q
R

Delivery,
Installation

and
Operational
Acceptance

Tests

A
R

Software
Operations

Engineering /
Software

Maintenance

DDF Software
component
designs

Supplier defines
detailed design

 Created

DDF Source code Created Maintained Maintained
DDF Software

Installation
Plan

Identifies how the
software is installed in
the operational
environment

 Finalised

DDF Build code files Delivered
DDF Executable

code files
 Delivered

DJF Software
Requirements
Verification
Report

Provides evidence of
requirements review

 Created Generated

DJF Design
Choices and
Trade-Offs

Supplier justifies
design decisions

 Top-level
design choices
and trade-offs
documented

 Maintained Maintained Maintained Maintained

DJF Software Reuse
Records

 Created Created Created

C-4 BSSC (2002)1 Issue 1.0
 APPENDIX C DOCUMENT LIFECYCLES

Lifecycle

Sofware Requirements
Engineering

Software Design
Engineering

Software Validation and
Acceptance File

key
at
end

Document
italics means
template not
available

Purpose System
Engineering
for Software

S
R
R

Software
Requirement

s Analysis

S
W
R
R

Software
Architectural

Design

P
D
R

Design,
Coding and

Testing,
Integration

Validation
against

Technical
Specification

C
D
R

Preliminary
Acceptance

Tests

Q
R

Delivery,
Installation

and
Operational
Acceptance

Tests

A
R

Software
Operations

Engineering /
Software

Maintenance

DJF Requirements
Traceability /
Compliance
matrices

Trace implementation
of requirements

System
requirements
to sub-system

partitions

 TS to RB
completeness

 Top-level
architecture
traceability

 Traceability of
detailed design

to TS

 Acceptance
test to RB

DJF Software
Validation
Testing
Specifications
(against TS)

Defines tests, test
cases and
procedures for
validation against TS

 Finalised

DJF Preliminary
Acceptance
Test
Specification
(Software
Validation
Testing
Specification
template)

Defines tests, test
cases and
procedures for FAT

 Created

BSSC (2002)1 Issue 1.0 C-5
APPENDIX C DOCUMENT LIFECYCLES

Lifecycle

Sofware Requirements
Engineering

Software Design
Engineering

Software Validation and
Acceptance File

key
at
end

Document
italics means
template not
available

Purpose System
Engineering
for Software

S
R
R

Software
Requirement

s Analysis

S
W
R
R

Software
Architectural

Design

P
D
R

Design,
Coding and

Testing,
Integration

Validation
against

Technical
Specification

C
D
R

Preliminary
Acceptance

Tests

Q
R

Delivery,
Installation

and
Operational
Acceptance

Tests

A
R

Software
Operations

Engineering /
Software

Maintenance

DJF Operational
Acceptance
Test
Specification
(Software
Validation
Testing
Specification
template)

Defines tests, test
cases and
procedures for PSAT
and SAT

 Finalised

DJF Software
Architecture
and Interface
Verification
Report

Provides evidence of
AD review

 Created Created (for
design

modifications)

DJF Software
Design
Verification
Report

Provides evidence of
DD review

 Created

DJF Software Code
Verification
Report

Provides evidence of
code review

 Created

DJF Software
Documentation
Verification
Report

Provides evidence of
document review

 Created

C-6 BSSC (2002)1 Issue 1.0
 APPENDIX C DOCUMENT LIFECYCLES

Lifecycle

Sofware Requirements
Engineering

Software Design
Engineering

Software Validation and
Acceptance File

key
at
end

Document
italics means
template not
available

Purpose System
Engineering
for Software

S
R
R

Software
Requirement

s Analysis

S
W
R
R

Software
Architectural

Design

P
D
R

Design,
Coding and

Testing,
Integration

Validation
against

Technical
Specification

C
D
R

Preliminary
Acceptance

Tests

Q
R

Delivery,
Installation

and
Operational
Acceptance

Tests

A
R

Software
Operations

Engineering /
Software

Maintenance

DJF Software Unit
Test
Verification
Report

Provides evidence of
unit test results
review

 Created

DJF Software
Integration
Verification
Report

Provides evidence of
Integration review

 Created

DJF Software
Integration Plan

Supplier plans the
integration task,
including integration
testing

 Preliminary
version
drafted

 Finalised

DJF Software Unit
Test Plan

Provides details of
Unit Testing

 Created

DJF Software Unit
Test Report

Provides results of
unit testing

 Created

DJF Integration Test
Report

Provides results of
integration testing

 Created

DJF Software
Validation
Testing Report

Records results of
Validation Testing
against the Technical
Specification. (Same
template used for FAT
and (P)SAT too.)

 Created

BSSC (2002)1 Issue 1.0 C-7
APPENDIX C DOCUMENT LIFECYCLES

Lifecycle

Sofware Requirements
Engineering

Software Design
Engineering

Software Validation and
Acceptance File

key
at
end

Document
italics means
template not
available

Purpose System
Engineering
for Software

S
R
R

Software
Requirement

s Analysis

S
W
R
R

Software
Architectural

Design

P
D
R

Design,
Coding and

Testing,
Integration

Validation
against

Technical
Specification

C
D
R

Preliminary
Acceptance

Tests

Q
R

Delivery,
Installation

and
Operational
Acceptance

Tests

A
R

Software
Operations

Engineering /
Software

Maintenance

DJF Preliminary
Acceptance
Test Results
(Software
Validation
Testing Report
template)

Records results of
FAT

 Created

DJF Operational
Acceptance
Test Results
(Software
Validation
Testing Report
template)

Records results of
PSAT and SAT

 Created

DJF Test
Specification
Evaluation
Report

Provides evidence of
review of a Test
Specification

 Created Created Created

DJF Software
Design and
Test Evaluation
Report

Evaluates the detailed
design and test

 Created

DJF Software
Budget Report

Reports status of
technical budget and
margins

Produced Updated Updated Updated Updated Updated

C-8 BSSC (2002)1 Issue 1.0
 APPENDIX C DOCUMENT LIFECYCLES

Lifecycle

Sofware Requirements
Engineering

Software Design
Engineering

Software Validation and
Acceptance File

key
at
end

Document
italics means
template not
available

Purpose System
Engineering
for Software

S
R
R

Software
Requirement

s Analysis

S
W
R
R

Software
Architectural

Design

P
D
R

Design,
Coding and

Testing,
Integration

Validation
against

Technical
Specification

C
D
R

Preliminary
Acceptance

Tests

Q
R

Delivery,
Installation

and
Operational
Acceptance

Tests

A
R

Software
Operations

Engineering /
Software

Maintenance

DJF Software
Configuration
File

Provides a definition
of the configuration of
the software at each
milestone

Produced to
identify
System

Engineering
documents

 Updated to
include

Requirements
Analysis

documents

 Updated to
include

Architectural
Design

documents

 Updated to
include all
software

configuration
Items

Updated to
reflect current
configuration

status

 Updated to
reflect current
configuration

status

 Updated to
reflect current
configuration

status

 Updated to
reflect current
configuration

status

PAF Product
Assurance
Report

Supplier reports on
product assurance
activities (on same
cycle as other
management reports)

produced on
management
report cycle

 produced on
management
report cycle

 produced on
management
report cycle

 produced on
management
report cycle

 produced on
management
report cycle

 produced on
management
report cycle

PAF Software
Product
Assurance Plan

Supplier defines plans
for measuring and
controlling product
and process quality

Drafted Maintained Maintained Maintained Maintained

O/M Software
Maintenance
Plan

Supplier defines
maintenance
organisation,
processes, etc.

May be drafted
now or at

agreed later
stage

 Drafted Finalised Maintained

O/M Software
Operations Plan

Operator defines
approach to
operational testing,
operation and user
support

Outline may be
drafted now or
at agreed later

stage

 Drafted Finalised Maintained

BSSC (2002)1 Issue 1.0 C-9
APPENDIX C DOCUMENT LIFECYCLES

Lifecycle

Sofware Requirements
Engineering

Software Design
Engineering

Software Validation and
Acceptance File

key
at
end

Document
italics means
template not
available

Purpose System
Engineering
for Software

S
R
R

Software
Requirement

s Analysis

S
W
R
R

Software
Architectural

Design

P
D
R

Design,
Coding and

Testing,
Integration

Validation
against

Technical
Specification

C
D
R

Preliminary
Acceptance

Tests

Q
R

Delivery,
Installation

and
Operational
Acceptance

Tests

A
R

Software
Operations

Engineering /
Software

Maintenance

O/M Maintenance
Records

Customer maintains
documentation related
to problems and
change requests

 Generated

O/M Migration Plan,
including
Migration
Justification

 Created

O/M Software
Retirement Plan

 Created

MGT Software
Configuration
Management
Plan

Supplier defines how
control of product
configuration will be
applied

Drafted Maintained Maintained Maintained Maintained

MGT Software
Progress
Report

Supplier reports
project status
(resource, schedule,
financial)

produced on
management
report cycle

 produced on
management
report cycle

 produced on
management
report cycle

 produced on
management
report cycle

produced on
management
report cycle

 produced on
management
report cycle

 produced on
management
report cycle

DJF /
O/M

Software
Problem Report

Records software
problems during
development or
operation

 Generated Generated Generated Generated Generated

C-10 BSSC (2002)1 Issue 1.0
 APPENDIX C DOCUMENT LIFECYCLES

Lifecycle

Sofware Requirements
Engineering

Software Design
Engineering

Software Validation and
Acceptance File

key
at
end

Document
italics means
template not
available

Purpose System
Engineering
for Software

S
R
R

Software
Requirement

s Analysis

S
W
R
R

Software
Architectural

Design

P
D
R

Design,
Coding and

Testing,
Integration

Validation
against

Technical
Specification

C
D
R

Preliminary
Acceptance

Tests

Q
R

Delivery,
Installation

and
Operational
Acceptance

Tests

A
R

Software
Operations

Engineering /
Software

Maintenance

DJF Non-
Conformance
Report

Records failure to
meet specified
requirement

 Generated Generated Generated Generated Generated Generated

DJF Observation
Report

Records unforeseen
departures from
planned tests and/or
outcomes, but which
are not failures

 Created Created Created

O/M Problem
Analysis Report

Provides assessment,
diagnosis, and
approach and
estimate for
rectification

 Created

DJF /
O/M

Software
Change
Request

Records a change
required and its cost
and schedule impacts

 Generated Generated Generated Generated Generated Generated Generated

O/M Software
Release Note

Provides information
on a new baseline,
including changes
applied and installation
instructions

 Created

BSSC (2002)1 Issue 1.0 C-11
APPENDIX C DOCUMENT LIFECYCLES

Lifecycle

Sofware Requirements
Engineering

Software Design
Engineering

Software Validation and
Acceptance File

key
at
end

Document
italics means
template not
available

Purpose System
Engineering
for Software

S
R
R

Software
Requirement

s Analysis

S
W
R
R

Software
Architectural

Design

P
D
R

Design,
Coding and

Testing,
Integration

Validation
against

Technical
Specification

C
D
R

Preliminary
Acceptance

Tests

Q
R

Delivery,
Installation

and
Operational
Acceptance

Tests

A
R

Software
Operations

Engineering /
Software

Maintenance

DJF Request for
Waiver

Requests and grants
(when signed) formal
approval to ignore a
requirement

 Generated Generated Generated Generated Generated Generated

MGT Lessons
Learned

Supplier assesses
lessons learned from
the project

 Finallised

Key to File identifiers:
DDF Design Definition File
DJF Design Justification File
MGT Management File
O/M Operations File / Maintenance File
PAF Product Assurance File
RB Requirements Baseline
TS Technical Specification

