Standard Radiation Environment Monitor SREM Characteristics

- 1. Online radiation monitoring and scientific data accumulation
- 2. Coarse spectroscopy of protons and electrons
- 3. Alarm flags for hyper and under activity
- 4. 3 Silicon Detectors in Al/Ta shielding
- 5. Directional sensitivity/telescope
- 6. Fast discriminators coupled with 15 scalers
- 7. Count rates >100 kiloevents/sec
- 8. Integrated dead time correction (3 scalers)
- 9. Energy threshold: 10 MeV p^+ , 0.5 MeV e^-
- 10. Mass: 2.5 kg
- 11. Dimensions: 96x122x217 mm³
- 12. Power consumption: $\approx 2W$
- 13. Temperatures: -20 to $+55^{\circ}C$ (o)
- 14. In-orbit operation time 10 years

Designed and manufactured by Contraves Space AG in cooperation with PSI/ESA

10 SREM units fabricated and 2 are already flying

Calibration Procedure

GOALS

- ï Key performances verification
- ï Response function determination
- ï Computer model testing
- ï Proper understanding for space collected data

STEPS

- Two tests with radioactive sources ⁶⁰Co/⁹⁰Sr
- ï Proton response calibrations in PIF
- i Linearity and sensitivity
- ï Dead time and pile-ups
- ï Total sensitive area
- ï Long term stability

Facilities

- 1. Calibrated radioactive sources:
- Gamma rays ⁶⁰Co ; <E>=1.25 MeV **ï**
- Electrons ⁹⁰Sr; E_{max}=2.28 MeV **i** Point-like sources placed on detector heads (and sides)
- 2. Protons from PIF/PSI Proton Irradiation Facility:
- Initial energies E_{low}=60 MeV, E_{high}=300 MeV **ï**
- E_{low} used at $0 \propto E_{high}$ used for angular distributions **ï**
- Flat beam field, on-line monitoring **ï**
- **ï** low dose (below 3 rad)

Full energy range:6 - 300 MeVFull angular range: $0^{\circ} \le \theta \le 180^{\circ}, 0^{\circ} \le \phi < 360^{\circ}$ Full flux range: $0 < F < 2 \Sigma 0^5 \text{ p/cm}^2/\text{sec}$

Energy set for comparison:

12, 18, 24, 28, 32, 36, 42, 50, 60, 70, 100, 150, 300 MeV

3. EGSE from CS AG and from PSI for protons remote operation from control room ñ 40m

SREM unit placed on the angular stage (and two plastic detectors in front - up)

LABORATORY FOR ASTROPHYSICS

3

Modeling

Mass model constructed using GEANT code

- ï Exact description of Si-detectors and housing
- ï Simplified printed boards, cables, connectors
- i About 350 volumes/shapes introduced

Extensions for comparison with calibration data

- i Single elements and geometry of PIF introduced
- ï Beam profiles and energy degrading included
- i Realistic flux normalization using plastics
- i Comparison with sources takes into account source geometry, position and activity for both e^- and γ

Steps

- ï Introducing individual parameters and corrections
- ï Computations and comparison (more fine tuning)
- ï Full response function calculations

Detector, Contact and Cable ñ expanded view

Linearity

Minimum Sensitivity:

Low energy threshold for detectors: 0.5 MIP (Minimum Ionizing Particle Energy) - 79.1 kev in 500 µm Si

Energy resolution of the analogue channel:

In agreement with calculations

Linearity Region:

Confirmed to be in a range: Ω - 30 MIPs (0.079 ñ 4.75 MeV)

Fulfils specifications for all p and e channels

CRAFT LABORATORY FOR ASTROPHYSICS

Measured for two SREMs and indirectly verified for all 10 units

5

Sensitive Area

Measured during calibration

Exposures at 0∞and 300 MeV Low intensity, flat beam Consistency within < 10%

Differs from nominal values (connected with det. technology)

D1 $<A>= 0.69 \text{ cm}^2$ D2 $<A>= 1.09 \text{ cm}^2$ D3 $<A>= 0.68 \text{ cm}^2$ (Error for single detector $< 0.01 \text{ cm}^2$)

Dead-time and Pile-ups

Measured using DT and TC scalers

Exposures at 0∞and 300 MeV

Intensity from 10^3 to 1.5ï 10^5 /cm²/s

Normalization to fast plastic detector

DT corrections smaller than required: 20% maximum at 10^5 /cm²/s

Only a few percent pile-ups for realistic space environment (at higher energies)

Low energy threshold

Measured using TC scalers and ICs

Exposures at $\Theta = 0 \infty$ and $E_0 = 60 \text{ MeV}$

Degrader steps 0.33 mm Al

Threshold fit for each detector Result within 5-10% with specs. D1 $E_{thr} = 22.8 \pm 0.5$ MeV D2 $E_{thr} = 44.0 \pm 1.6$ MeV D3 $E_{thr} = 9.1 \pm 0.4$ MeV *Relatively large scatter of results*

I. Low energy response at 0°

Example: Comparison of PROBA results

Calculations include beam and facility features

In general agreement is very good but closer to thresholds ñ bigger deviations

II. Low energy response at 0°

Comparison for SREMs PFM3 to PFM9:

Agreement generally very good !

Again - far from thresholds ñ better (see e.g. S14 at 40 and 60 MeV)

Jump from PFM06 in coincidence scalers (see C1,C2 from PFM06) ñ fit of thresholds?

LABORATORY FOR ASTROPHYSICS

10

Angular distributions

Example: PROBA results at 100 MeV Angle pairs $(\Theta, \varphi) = (0, 0), (30, 0), (45, 270)$

Agreement is pretty good

Response quickly decreases with angle

High energy response vs. angle

Example: PFM05 (selected angles & scalers)

Strong energy dependence even at 0∞

High angular sensitivity even at high E

Batch Comparison - Summary

- 1. Calibration results generally successful
- 2. In average, agreement better than 10%
- **3.** Some coincidence channels differ more
- 4. Using response for typical mass model
- 5. Corrections for area and thresholds fits

Gamma Responses

ï Two test routinely performed,
ï Only half of scalers can be tested with ⁶⁰Co
ï Very sensitive to any changes in threshold sensitive area and Contact changes.
All SREMs up to PFM09 similar

Electron Responses

Good agreement already for calculations with no free parameters

All SREMs behave in a similar way

CRATCRY FOR ASTROPHYSICS

Full Response Matrix - Protons

Discriminator levels are set to select proton energy

The range extends from 8 MeV

Single channels cover lower energies

Coincidence channels are sensitive to higher energies

Full Response Matrix - Electrons

Discriminator allow to select electron energy

The range extends from 0.6 MeV

Typical Responses

18

Detection Limits

Response with Satellite

Only high energy proton sensitivity changes but responses for typical space spectra differ little

Contractory for astrophysics

PROBA with SREM Onboard

Until now only limited data available (*SREM mostly OFF*) due to satellite tiny power budget and restricted planning

Contractory For Astrophysics

First Environment Maps

First Orbital Data

Expected Radiation Environment

24

PAUL SCHERRER INSTITUT ----