COSE JUICE: a European mission to Jupiter and its icy moons

Juice science themes

Emergence of habitable worlds around gas giants

mede as a planetary object

- Largest satellite in the solar system
- Ocean between icy layers
- Internal dynamo
- Richest crater morphologies Archetype of waterworlds

opa's recently active zones An active world?

Ocean in contact with silicates

llisto as a remnant of the earl an system

Impactor history

Enigmatic differentiation Witness of early ages

JANUS: Visible Camera System PI: Pasquale Palumbo, Parthenope University, Italy.	SWI: Sub-mm Wave Instrument PI: Paul Hartogh, MPS, Germany
 Co-PI: Ralf Jaumann, DLR, Germany ≥7.5m/pixel Multiband imaging, 380 - 1080 nm Icy moon geology Io activity monitoring and other moons observations Jovian atmosphere dynamics 	 600 GHz Jovian Stratosphere Moon atmosphere Atmospheric isotopes
 MAJIS: Imaging VIS-NIR/IR Spectrograph PI: Yves Langevin, IAS, France Co-PI: Guiseppe Piccioni, INAF, Italy 0.9-1.9 μm and 1.5-5.7 μm ≥62.5 m/pixel Surface composition Jovian atmosphere 	GALA: Laser Altimeter PI: Hauke Hussmann, DLR, Germany • ≥40 m spot size • ≥0.1 m accuracy • Shape and rotational state • Tidal deformation • Slopes, roughness, albedo
 UVS: UV Imaging Spectrograph PI: Randy Gladstone, SwRI, USA 55-210 nm 0.04°-0.16° Aurora and Airglow Surface albedos Stellar and Solar Occultation 	RIME: Ice Penetrating Radar PI: Lorenzo Bruzzone, Trento, Italy Co-PI: Jeff Plaut, JPL, USA 9 MHz Penetration ~9 km Vertical resolution 50 m Subsurface investigations
 JMAG: JUICE Magnetometer PI: Michele Dougherty, Imperial, UK Dual Fluxgate and Scalar mag ±8000 nT range, 0.2 nT accuracy Moon interior through induction Dynamical plasma processes 	 SGM: Gravity, Geophysics, Galilean Moons Pl: Luciano less, Rome, Italy Co-Pl: David J. Stevenson, CalTech, USA Ranging by radio tracking 2 µm/s range rate 20 cm range accuracy Gravity fields and tidal deformation Ephemerides Bi-static and radio occultation experiments
 PEP: Particle Environment Package PI: Stas Barabash, IRF-K, Sweden Co-PI: Peter Wurz, UBe, Switzerland Six sensor suite Ions, electrons, neutral gas (in-situ) Remote ENA imaging of plasma and torus 	PRIDE: Planetary Radio Interferometer & Doppler Experiment Pl: Leonid Gurvits, JIVE, EU/The Netherlands • S/C state vector • Ephemerides • Bi-static and radio occultation experiments
RPWI: Radio and Plasma Wave Investigation PI: Jan-Erik Wahlund, IRF-U, Sweden Langmuir Probes Search Coil Magnetometer Tri-axial dipole antenna	

Spacecraft

• **3-axis stabilised**

- Mass:
 - Launch mass: 5264 kg
 - Instruments: 219 kg
 - Propellant: 2857 kg
- **Radiation monitor**
- Solar array 97 m² [Power ~850 W at Jupiter]
- **Fixed High Gain Antenna and Steerable**
- Medium Gain Antenna (X, Ka Bands)
- Data Volume ~ 1.4 Gb per day

Olivier Witasse, the Science Working Team and the Science Operations Team Contact: ESA, Scientific Support Office Olivier.Witasse@esa.int Tel: +31 71 565 8015

Timeline

012: Mission selected 013: Payload selected 015: Prime industrial contractor selected 015-03/2017: Phase B2 017 – 03/2019: Phase C -2019: Instrument flight model deliveries 019-09/2021: Phase D 022: Launch **023: Earth flyby 023: Venus flyby 024: Earth flyby .025: Mars flyby 026: Earth flyby 029: Jupiter orbit insertion 030-09/2030 : 3 Ganymede and 1 Callisto flyby 030: 2 Europa flybys** 030-06/2031: Jupiter inclined phase, 9 Callisto flybys 2031-08/2032: Transfer to Ganymede, **8 Ganymede and 3 Callisto flybys 032: Ganymede orbit insertion** Elliptical orbit, 5000 km circular orbit, 500 km circular orbit **033: End of mission**

Ganymede Interior

5000/500 km circular orbits).

Study of subsurface water in the Jovian icy moons

The NASA Galileo mission discovered evidence for the existence of subsurface oceans hidden beneath the icy crusts of Europa, Ganymede and Callisto. JUICE will characterise the conditions that may have led to the emergence of habitable environments among these three icy satellites. > At Ganymede, JUICE will characterise the extent of the ocean, its main physico-chemical properties and its relation to the deeper interior. Exchange processes between surface and subsurface liquid reservoirs will also be studied. Detection of shallow subsurface liquid water will be attempted. > At Europa, JUICE will search for liquid water in the shallow sub-surface.

- > At Callisto, JUICE will characterise the outer shells, including the possible detection of shallow subsurface water and ocean.
- A selection of investigations at Ganymede is given below:
- RPWI instruments will constrain the electrical conductivity and extent of the ocean.
- of the moon.
- satellite because of the formation of the tidal bulge, to be measured by 3GM.
- rate, pole-position, obliquity, and libration amplitude.

	J-MAG	3GM	GALA	RIME	RPWI	PEP	JANUS	UVS	PRIDE
Ganymede: ocean									
characterisation									
Europa: search for liquid water in									
the shallow sub-surface.									
Callisto: possible detection of									
shallow subsurface water/ocean.									

Instrument contributions to the study of subsurface liquid water in the icy moons. Green: primary instrument. Yellow: supporting instrument.

Electrical currents in salty oceans can generate secondary magnetic and electric fields in response to the external rotating Jovian magnetic field. Measurements at multiple frequencies with the J-MAG and

The tidal response of the icy shells strongly depends on the presence of ocean. The amplitudes of surface deformation will be measured by GALA. PRIDE will provide complementary information on the shape

Along with the tidal surface displacements, there is a time variability of the gravitational potential of the

> The Galilean moons are locked in a stable 1:1 spin-orbit resonance. However, slight periodic variations in the rotation rate (physical librations) and the amplitudes associated with these librations can provide further evidence for a subsurface ocean. 3GM, GALA and JANUS will measure precisely the rotation