Interstellar Water Ice Formation: A laboratory perspective

Sergio Ioppolo

Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK

Water in space

- Fundamental for life on Earth

What is its origin and how was it delivered to the Earth?

I = 10-20 K $n > 10^2 \text{ cm}^{-3}$

< 1 µm

Interstellar ice chemistry

Carbonaceous/Silicate Grains

RECHERCHES ASTRONOMIQUES DE L'OBSERVATOIRE D'UTRECHT

THE SOLID PARTICLES IN INTERSTELLAR SPACE BY H. C. VAN DE HULST

van de Hulst, RAOU (1946)

T = 10-20 K $n > 10^2 \text{ cm}^{-3}$

< 1 µm

ICE FEATURE	LOW MASS	HIGH MASS	BACKGROUND
H ₂ O	100	100	100
СО	29	13	31
CO ₂	29	13	38
CH ₃ OH	3	4	4
NH ₃	5	5	
CH ₄	5	2	
XCN	0.3	0.6	

Interstellar water ice

Astron. Astrophys. 114, 245-260 (1982)

ASTRONOMY AND ASTROPHYSICS

Model Calculations of the Molecular Composition of Interstellar Grain Mantles

A. G. G. M. Tielens* and W. Hagen** Laboratory Astrophysics Group, Rijksaniveniteit, 2300 RA Leiden, The Nether Received February 1, accepted May 19, 1982.

Sumpting the intention of controls the control in a simulation of the controls in a single size of the size of the

sphanic on the observed 3220cm⁻¹ 'sor' "strenking and hund accreted at a denity of 10³-10⁴ cm⁻². To a laboratory speet trations of H_sO (~40%) and produce a first hard is suggested that the low frastatute observed in interstellar spectra is due 3.0, H_sO₂ and NH_s hydrogen bended to 3.250 cm⁻¹. This fars without of H_sO to be speed on the speed of the speed of the speed speed of the spe

and a 25-bit "The future is generally should be with the terrelation of the start of the star

H₂, NH₂, vibration of H₂O is generally not observed (Aitkin, 1981) meents all However in H₂O (as) this shoreprior focuser occurs around ht, 1949), 750 cm⁻¹ and may therefoce escape detection because of amoophretic absorption (Hagma and Tielens, 1982; Hagm et al., 1982) The identification of interstellar solid H₂O can therefore be ter, M₂.

Recent spectra of the 2500 cm⁻¹ to 1250 cm⁻¹ region show um, broad absorption lines due to molecules in the solid phase (Puetter et al., 1979; Solfer et al., 1979). Tentative identification

ean Southern Observatory • Provided by the NASA Astrophysics Data System

Tielens & Hagen, A&A (1982)

Interstellar water ice

Formation hydrogen N. Miyauchi since of Low 2

ARTICLE

	journal homepage: www.elsevier.com/locate/cplett
of hydrog itoms wit	en peroxide and water from the reaction of cold h solid oxygen at 10 K
H. Hidaka, T unov Science, Hokke	'. Chigai, A. Nagaoka, N. Watanabe, A. Kouchi ale Internity, NIS-WE, Kin-Ju, Septem 000-0003, Japan
NFO	ABSTRACT
006 ary 2008 ch 2006	The reactions of cold H atoms with solid G ₂ molecules were investigated at 10 k. The formation of H ₂ O ₂ and H ₂ O has been confirmed by in situ intravel sportneeopy. We found that the reaction proceeds very efficiently and obtained the effective maxim narch. This is the first character experimental velocities of the formation of water molecules under confidence minimizing those found in cold interstellar molecular leads of the constraint length. we discuss the reaction mechanism and attrobules

Chemical Physics Letters

	© 2008 Esevier 8.V. All rights reserved.	
	which has an activation energy of 5.16 kcalimel in t	he gas phase [7].
solid material in space, and has	For the third process, Tietens and Hagen [8] prop reactions	osed atternative
ysical environments, such as out- interstellar clouds [1]. Since the erstellar molecular cloud, icy ob- ed from the water ice formed in barefine aviating an understand.	$O + O \rightarrow O_2$, $O_2 + H \rightarrow HO_2$, $HO_2 + H \rightarrow H_2O_2$, $HO_4 + H \rightarrow H_2O_2$, $HO_4 = H - H_4O_2$ (0H)	(4) (5) (6) (7)
Interesting, participant of the origin of the solar system, but the origin of the solar system, but outlined and the origin of life [2], hism of water molecules in the understood to date. It has been atter molecules in the gas phase served abundance in molecular suggested that water molecular songisted that water molecular ions involving H and O on pre- grains at around 10 k [3–5].	Reaction (5) has ensentially no barrier; thereretically untim energies its between 01 and C4 kal/mell bas attration energies of 3.4.5.4.2 https://dx. enalbhe.com/sectors/sectors/sectors/sectors/sectors/ enalbhe.com/sectors/sectors/sectors/sectors/ enalbhe.com/sectors/sectors/sectors/sectors/ hereins/sectors/sectors/sectors/sectors/ hereins/sectors/sectors/sectors/sectors/ enalbhe/sectors/sectors/sectors/ enables/sectors/sectors/sectors/ enables/sectors/sectors/ enables/sectors/ enables/sectors/ enables/sectors/ enables/	y estimated acti- [9], Reaction (7) activation ener- has been no data ble water forma- lost (6) simulated mments of inter- 2) are the main -(7) are the main e the major gas-

009-2614(5 - see front matter 0 2006 Elsevier B.V. All rights reserved

TORMON TIMAS

The Astronometrica, Jonessa, 686:1474-1479, 2008 October 20 C 2008 The Astronom Astronomical Society, 62 (data reserved, Printel in U.

I. INTRODUCTION

been observed on the su

on the H + O₂ channel in which O₂ $H + O_2 \rightarrow HO_2$ $H + HO_2 \rightarrow H_2O_2$

ISM: molecules

 $\rm H + H_2O_2 \rightarrow H_2O + OH$ $H + OH \rightarrow H_2O$ m & Herbst (2007), this

2. EXPERIMENTA

Experiments are performed using an ultrahigh $< 5 \times 10^{-10}$ mbar) which comprises a main cl

ABSTRACT tuent in interstellar icy n

mod: ISM -- ISM:

Matar et al., A&AL (2008) UNIVERSITÉ de Cergy-Pontoise

Interstellar water ice

Dulieu et al. 2010; Jing et al. 2011

Miyauchi et al. 2008; loppolo et al. 2008, 2010; Matar et al. 2008; Oba et al. 2009, 2012, 2014; Cuppen et al. 2010; Chaabouni et al. 2012; Lamberts et al. 2013, 2014a; 2014b; 2015; 2016

Mokrane et al. 2009; Romanzin et al. 2011

Sackler Laboratory for Astrophysics

Prof. Harold Linnartz

(TALK @ 10:50)

Dr. Thanja Lamberts

Dr. Herma Cuppen (Radboud University Nijmegen)

Prof. Ewine van Dishoeck

SURFRESIDE²

SURFace REaction SImulation Device 2

QMS

ATOM SOURCE

UHV Chamb 1

ATOM SOURCE

FTIR

Experimental Procedure

Pre-deposition Experiments

Surface Hydrogenation of O₂

Pre-deposition Experiments

loppolo et al., RFAL (2011)

Experimental Procedure

Co-deposition Experiments

Surface Hydrogenation of O₂

Co-deposition Experiments

Cuppen et al., PCCP (2010)

Co-deposition: $O_2 + H$ ice

Temperature: *T* = 20 K

H-atom flux: 2.5x10¹³ cm⁻² s⁻¹

H-atom fluences: 3x10¹⁷ atoms cm⁻²

Experimental Procedure

Analytical Tools

Hydrogenation of O Atoms

Transition from Diffuse to Dense Clouds ($A_v \sim 1-5$)

 $D + {}^{18}O$ on water ice (10K) HD¹⁸O \triangle 60 D₂¹⁸O QMS signal (cps) 30 0 50 100 150 200 Surface Temperature (K)

D + ¹⁶O on bare grain analogs (15K)

Dulieu et al., A&A (2010)

Dense Molecular Clouds ($A_v > 5$)

Solid $O_2(10K) + H$

Hydrogenation of O₂

Temperature Dependence

Ioppolo et al., ApJ (2008); PCCP (2010)

Formation rates are temperature independent — linear behavior.

Very high final yield, temperature dependent.

At low temperature, in agreement with Miyauchi et al. (2008) (10 K).

Hydrogenation of O₂ Temperature Dependence

loppolo et al., PCCP (2010)

Competition

Competition between reaction $H + O_2$ (*T* independent) and diffusion of H atoms into O_2 ice (*T* dependent).

Hydrogenation of O₂

New Reaction Scheme

Cuppen et al., PCCP (2010)

Hydrogenation of O₂ Monte Carlo Simulations

Lamberts et al., PCCP (2013)

Hydrogenation of O₂

Monte Carlo Simulations

- Key reactions for the O₂ channel are in red
- Slow destruction of H₂O₂ explains its high accumulation
- High H diffusion rate reproduces large penetration depth of H into O₂ ice
- Diffusion of radical species (OH and H) is a key parameter

Lamberts et al., PCCP (2013)

Table 5 Parameters that reproduce the selected experiments the best. Acomparison to (mean) gas-phase literature values is also included. Key reactionsare listed in bold face

Reaction	R^a (s ⁻¹	R^{a} (s ⁻¹)	
Temperature independent re	eactions		
$H + H \rightarrow H_2$	1 imes 10	12	
$H + O_2 \rightarrow HO_2$	1.1 imes 1	1.1×10^{5b}	
$H + HO_2 \rightarrow products$	1 imes 10	$1 imes 10^{12}$	
OH + OH	56%	56%	
H_2O_2	35%		
$H_2 + O_2$	2%	2%	
$H_2O + O$	7%		
$H + O \rightarrow OH$	1 imes 10	$1 imes 10^{12}$	
$O + O \rightarrow O_2$	1 imes 10	$1 imes 10^{12c}$	
$H + O_3 \rightarrow O_2 + OH$	1.1 imes 1	1.1×10^{5}	
$H + OH \rightarrow H_2O$	1.1 imes 1	$1.1 imes 10^5$	
Temperature dependent read	ctions		
$H + H_2O_2 \rightarrow H_2O + OH$	800	1280	2000^{32}
$H_2 + O \rightarrow OH + H$	3165^{c}	3165^{c}	3165^{45}
$H_2 + HO_2 \rightarrow H_2O_2 + H$	5000^{c}	5000^{c}	13100^{33}
$H_2 + OH \rightarrow H_2O + H$	500^{c}	800^{c}	$2100^{31,36}$
$OH + OH \rightarrow products$	d	d	0^{31}
H_2O_2	90%	90%	0^{31}
$H_2O + O$	10%	10%	0^{31}
$O + O_2 \rightarrow O_3$	500	500	0^{31}

NOTE: the hydrogen diffusion barrier used was 53 K instead of the value listed in Table 3. ^{*a*} This work. ^{*b*} A value of 8.3×10^5 is used for the co-deposition simulations. ^{*c*} Reaction practically does not take place in our simulations. ^{*d*} See Section 4.2.3.

Hydrogenation of O₃

Romanzin et al., JCP (2011)

- Large activation barrier in gas phase (>2000 K)
- Large isotope effect (reaction rate H >> D atoms)
- Reactions proceed through quantum tunneling (10-30 K)

Selected Reactions to Water

- Large activation barrier in gas phase (2100 K)
- Large isotope effect (H₂O form >> HDO form)
- Reactions proceed through quantum tunneling

- Reaction is endothermic by 960 K
- Combined classical & tunneled reaction mechanism
- <11% of water in MC formed through O + H₂ channel

Modelling Grain Surface Chemistry

The Effect of Exothermicity

Lamberts et al., FD (2014)

- Exothermal reactions with two or more products lead to diffusion and desorption
- Exothermicity also leads to compaction of the ice
- Excess energy used to overcome chemical reactions (unclear mechanism)
- Kick-out mechanism unexplored here

Modelling Grain Surface Chemistry

The Effect of Exothermicity

Lamberts et al., FD (2014)

- Final amount of produced H₂O is similar to the one found in Cuppen & Herbst, ApJ (2007)
- Results in good agreement with observations
- Main differences between the two studies are the formation routes for water ice
- Consequences for the deuterium fractionation of ice species at low T

	T_{ex} (K)	H + OH	$H_2 + OH$	$H + H_2O_2$	OH + OH	$H + HO_2$
Diffuse	1400	99.5	0.0	0.0	0.5	0.0
	2000	99.8	0.0	0.1	0.1	0.0
Translucent	1400	85.4	2.4	10.4	1.8	0.0
	2000	87.6	2.2	8.7	1.5	0.0
Dense I	1400	76.7	17.6	4.0	1.0	0.7
Dense II	1400	22.5	61.6	11.3	2.4	2.2

Table 7Contributions of the different reaction routes to H_2O formation in percentage

Diffuse cloud

Translucent cloud

Dense cloud I

Before Thermal Desorption

Thermal H/D Exchange

Lamberts et al., MNRAS (2015)

- Activation energy for H/D exchange (3840 ± 125 K)
- Proton/deuteron swapping also in water ice mixtures (OH, NH groups)
- Reactive timescales (< 10^4 years at T > 70 K) relevant to interstellar environments

Take Home Message

- Laboratory work fundamental to investigate water formation in space
- Bottom-up approach highlighted a more complex surface reaction pathway
- Simulations can push results beyond laboratory possibilities

FUTURE CHALLENGES

Design new experiments to:

- Better understanding of fundamental mechanisms (reaction, diffusion, desorption)
- Obtain more accurate surface reaction rates
- Investigate proton transfer and energy relaxation in ices in more detail

(Daniel Paardekooper's Talk)