

Towards accurate tunneling rates on a surface: A case study of H + $H_2O_2 \rightarrow H_2O + OH$

Thanja Lamberts and Johannes Kästner stitute for Theoretical Chemistry, University of Stuttgart, Germany

H₂O network in relation to H₂O₂ observations

What can be done?

Methods

Geometries

Reaction rates!

Outlook

Water formation network

Dense clouds:

 $O_2 \rightarrow HO_2 \rightarrow H_2O_2 \rightarrow H_2O + OH$

- Only final step high barrier
- Tunneling! (Kinetic Isotope Effect)
- H₂O₂ abundance seems to be strongly T-dependent
- Surface reaction hydrogen bonds

 H_2O network in relation to H_2O_2 observations

Reaction rates?

Reaction rates?

Reaction rates?

Methods

Ab initio methods
 Density functional theory
 Functional and basis set chosen to match a
 CCSD(T)-F12 benchmark

• Rate theory Taking into account tunneling Instanton theory Functional: MPW1B95 & M05-2X

> Basis set: MG3S

NWChem

DL-find library in ChemShell

Ellingson et al. (2007), Kästner et al. (2009), Rommel et al. (2011)

Branching ratio

Eley-

Classical vs. Bell/Eckart vs. Instanton

Databases

Geometries

Unimolecular rates

Rate equations: $k_{uni} \propto P_{reac} \cdot \nu \cdot (P_{diff,A} + P_{diff,B})$ KMC: $k_{uni} \propto \nu \cdot P_{reac}$

With $P_{\rm reac} = e^{-E_{\rm reac}/T}$

Effectively: both ν and E_{reac} fitting parameters, e.g., $E_{reac} = 1900$ K vs. 2508 K vs. 3100 K

Langmuir - Hinshel wood

Unimolecular rates

Unimolecular rates

Kinetic Isotope Effect

Kinetic Isotope Effect

Langmuir - Hinshel wood

Oba et al. 2014

What have we learned?

Instanton theory is a powerful tool to calculate low-T reaction rates

Conclusions

What have we learned?

Instanton theory is a powerful tool to calculate low-T reaction rates

Branching ratio: main product channel is H₂O + OH
 KIE: qualitative agreement with experiment
 Gas vs. Clusters: water in the vicinity of the reactive center impacts on the reaction rate

Conclusions

What have we learned?

Instanton theory is a powerful tool to calculate low-T reaction rates

Branching ratio: main product channel is H₂O + OH
 KIE: qualitative agreement with experiment
 Gas vs. Clusters: water in the vicinity of the reactive center impacts on the reaction rate

Difference between bimolecular and unimolecular rates important to note!

Conclusions

Thank you!

Johannes Kästner Jan Meisner Pradipta Kumar Samanta Sonia Álvarez Barcia Thomas Bissinger

BWForCluster Justus

European Research Council Established by the European Commission 646717 TUNNELCHEM

Method	Reaction 1 H + H ₂ O ₂ \rightarrow H ₂ O + OH		Reaction 2 H + H ₂ O ₂ \rightarrow	Reaction 2 H + $H_2O_2 \rightarrow HO_2 + H_2$	
	kJ/mol	Kelvin	kJ/mol	Kelvin	
CCSD(T)-F12 / VTZ-F12	25.52	3069	39.38	4737	
ic-MRCCSD(T) / cc-pVQZ	25.93	3111			
Ellingson et al. (2007)	27.2	3260	41.4	4966	1
MPW1B95 / MG3S	26.50	3187	23.66	2845	
M05-2X / MG3S	45.86	5515	39.74	4779	
PWB6K / MG3S	35.96	4325	35.40	4257	
B3LYP / MG3S	11.22	1349	8.07	970	Benchmark
B3LYP / def2-TZVPD	10.78	1296	7.33	881	geometries
Energies in kJ/mol and Kelvin, wi	thout ZPE correc	tions, no dispersio	on correction		

Ellingson et al. (2007)

Classical vs. Bell/Eckart vs. Instanton

Databases

Branching ratio -- Extended

Extra

Flexible vs. Frozen

Isotopes bimolecular

