# WATER FORMATION IN INTERSTELLAR ICES

Gisela B. Esplugues Stéphanie Cazaux, Rowin Meijerink, Marco Spaans, Paola Caselli Kapteyn Astronomical Institute, Leiden Observatory, Max Planck Institute (MPE) <u>WATER IN THE UNIVERSE: FROM CLOUDS TO OCEANS</u>

12<sup>th</sup> April 2016







Study of the different water formation routes through surface chemistry depending on the interstellar conditions

# Why dust grains?

- Powerful interstellar catalysts
- Water is one of the most abundant ices on grains
- Adsorption is not enough to explain observations of H<sub>2</sub>O ice abundances



### Meijerink code

#### Before

(Meijerink & Spaans 2005)

#### Chemistry

- Gas chemistry (UMIST 99): 4453 chemical reactions
- Dust chemistry: H<sub>2</sub> formation

#### **Heating & Cooling**

- Photo-electric effect on grains
- Carbon ionization
- H2 photo-dissociation
- H2 collisional (de-)excitation
- Gas-grain collisions
- UV & cosmic-ray ionization
- Fine-structure & metastable-lines
- Recombination
- Molecular cooling  $(H_2, CO, H_2O)$

## Meijerink code

#### Before

(Meijerink & Spaans 2005)

#### Chemistry

- Gas chemistry (UMIST 99): 4453 chemical reactions
- Dust chemistry: H<sub>2</sub> formation



(Esplugues et al. submitted to A&A)

Now

#### Chemistry

- Gas chemistry (KIDA 2014): 7503 chemical reactions
- Dust chemistry (from laboratory experiments, e.g., Dulieu et al. 2013, Minissale et al. 2015, 2016):
   225 chemical reactions
  - Adsorption
  - Thermal & chemical desorption
  - Two-body reactions
  - Photo-processes
  - Cosmic-ray processes
- 22 solid species:
  H, H<sub>2</sub>, O, O<sub>2</sub>, OH, O<sub>3</sub>, H<sub>2</sub>O, HO<sub>2</sub>, H<sub>2</sub>O<sub>2</sub>,
  CO, HCO, H<sub>2</sub>CO, H<sub>3</sub>CO, H<sub>4</sub>CO, CO<sub>2</sub>, N,
  N<sub>2</sub>, C, CH, CH<sub>2</sub>, CH<sub>3</sub>, CH<sub>4</sub>.

### Meijerink code: dust treatment

Icy grains and bare grains (different binding energies)

• Dust temperature  $(T_d)$ :

- Impact on gas temperature  $(T_q)$
- Variations in the reaction rates
- Freeze out of gas species
- Ice mantle formation



Garrod & Pauli (2011):

 $T_{dust} = 18.67 - 1.637 [A_v - \log(G_o)] + 0.07518 [A_v - \log(G_o)]^2 - 0.001492 [A_v - \log(G_o)]^3$ 

## Water in different interstellar environments



 $G_0$ =1 corresponds to a flux of 1.6·10<sup>-3</sup> erg cm<sup>-2</sup> s<sup>-1</sup>







### Dust-phase: H<sub>2</sub>O ice monolayer formation



• High *n* and, especially, low  $G_0$  favour the formation of  $H_2O$  ice full monolayers

### Water formation: Icy vs Bare grains



- Solid H<sub>2</sub>O: small differences between icy and bare grains.
- Gas H<sub>2</sub>O: abundances ~1 order of magnitude higher with bare grains.
- Bare grains also favour the formation of solid and gas  $H_2O_2$ .





# Conclusions

Chemical desorption and icy-bare dust (different binding energies)

#### Type of grain substrate:

- Solid water: small abundance differences between bare and icy grains
- Gas water: bare grains favour its formation

#### Gas water formation precursors (at $A_v \le 5$ mag):

- Solid H and solid OH

#### → Surface processes forming gas water:

- PDRs: chemical desorption (A<sub>v</sub>≤5 mag)
- Dark clouds: chemical desorption ( $A_v < 1.5 \text{ mag}$ ) & photo-desorption ( $1.5 \le A_v \le 5 \text{ mag}$ )