Water in pre-stellar cores

wish

Paola Caselli Center for Astrochemical Studies Max-Planck-Institute for Extraterrestrial Physics

Credit: ESA/Herschel/SPIRE

Together with...

Aikawa (Kobe) Bergin (Michigan) Codella (INAF/Arcetri) Keto (CfA) Kristensen (CfA) Nisini (INAF/Roma) Pagani (LERMA) Tafalla (Madrid) van der Tak (Groningen) van Dishoeck (Leiden) Walmsley (INAF/Arcetri) Yildiz (JPL)

Credit: ESA/Herschel/SPIRE

...

WISH

Outline

- Introduction: pre-stellar cores
- Detection of water vapor:
 - Previous attempts
 - WISH 2010
 - WISH 2011
- What have we learned?

Molecular clouds, dense cores and star formation

Pre-stellar cores: temperature structure

Pre-stellar cores are gravitationally unstable starless cores (e.g. Ward-Thompson et al. 1999; Crapsi et al. 2005; Keto & Caselli 2008)

They have temperature gradients (~6-12 K)

Pre-stellar cores: CO freeze-out

Pre-stellar cores: strong ortho-H₂D⁺

- Led to strong revision of astrochemical models (e.g. Roberts et al. 2003)
- Triggered new laboratory work (e.g. Hugo et al. 2009)

Pre-stellar cores: deuterium fractionation

Right ascension

 CH_3OH traces the region where CO is freezing out (R ~ 4000 AU; *Bizzocchi et al. 2014*)

 $CH_2DOH/CH_3OH \sim 0.1$ (toward center) [to be compared with $D_{frac} \sim 0.4$ from NH_2D/NH_3 ; *Crapsi et al. 2007*]

Pre-stellar cores: complex organic molecules

A&A 541, L12 (2012) DOI: 10.1051/0004-6361/201219207 © ESO 2012 Astronomy Astrophysics

Letter to the Editor

Detection of complex organic molecules in a prestellar core: a new challenge for astrochemical models*,**

A. Bacmann¹, V. Taquet¹, A. Faure¹, C. Kahane¹, and C. Ceccarelli¹

Table 1	1.	Line	fluxes ^a	and	column	densities.
---------	----	------	---------------------	-----	--------	------------

Species	Transition	T _{mb} (mK)	rms (mK)	Integrated area (K km s ⁻¹)	Column density ^c (cm ⁻²) $T_{ex} = 5 \text{ K}$	Column density ^c (cm ⁻²) $T_{ex} = 4 \text{ K}$	Column density ^c (cm ⁻²) $T_{\rm ex} = 8 {\rm K}$
AA-CH ₃ OCH ₃	$4_{14} - 3_{03}$	55	7	0.026 ± 0.005	$(3.32 \pm 0.74) \ 10^{12}$	$(5.08 \pm 1.12) \ 10^{12}$	$(2.49 \pm 0.55) \ 10^{12}$
EE-CH ₃ OCH ₃	$4_{14} - 3_{03}$	90	7	0.037 ± 0.005	$(6.81 \pm 0.92) \ 10^{12}$	$(10.4 \pm 1.40) \ 10^{12}$	$(5.11 \pm 0.69) \ 10^{12}$
EA-CH ₃ OCH ₃	$4_{14} - 3_{03}$	36 ^b	7	0.014 ± 0.003	$(1.65 \pm 0.55) \ 10^{12}$	$(2.53 \pm 0.84) 10^{12}$	$(1.24 \pm 0.41) \ 10^{12}$
AE-CH ₃ OCH ₃	$4_{14} - 3_{03}$	22^{b}	7	0.009 ± 0.003	$(1.67 \pm 0.37) \ 10^{12}$	$(2.55 \pm 0.56) \ 10^{12}$	$(1.25 \pm 0.28) \ 10^{12}$
E-CH ₃ CHO	514-413	125	3	0.149 ± 0.015	$(9.12 \pm 0.92) \ 10^{12}$	$(2.67 \pm 0.27) \ 10^{13}$	$(2.12 \pm 0.21) \ 10^{12}$
A-CH ₃ CHO	$5_{14} - 4_{13}$	110	4	0.137 ± 0.014	$(8.26 \pm 0.84) \ 10^{12}$	$(1.73 \pm 0.18) 10^{13}$	$(3.86 \pm 0.39) 10^{12}$
A-CH ₃ OCHO	$8_{17} - 7_{16}$	20	3	0.025 ± 0.005	$(2.01 \pm 0.40) \ 10^{13}$	$(5.73 \pm 1.15) \ 10^{13}$	$(5.91 \pm 1.18) \ 10^{12}$
A-CH ₃ OCHO	$9_{09} - 8_{08}$	12	2	0.016 ± 0.005	$(1.73 \pm 0.54) \ 10^{13}$	$(5.50 \pm 1.71) \ 10^{13}$	$(4.33 \pm 1.35) \ 10^{12}$
E-CH ₃ OCHO	$8_{17} - 7_{16}$	19	3	0.024 ± 0.005	$(1.90 \pm 0.40) \ 10^{13}$	$(5.44 \pm 1.15) \ 10^{13}$	$(5.59 \pm 1.18)10^{12}$
E-CH ₃ OCHO	$9_{09} - 8_{08}$	12	2	0.016 ± 0.003	$(1.72 \pm 0.32) \ 10^{13}$	$(5.47 \pm 1.03) \ 10^{13}$	$(4.32 \pm 0.81) \ 10^{12}$
o-CH ₂ CO	515-414	140	3	0.171 ± 0.018	$(1.50 \pm 0.16) \ 10^{13}$	$(3.09 \pm 0.33) \ 10^{13}$	$(6.75 \pm 0.71) \ 10^{12}$
p-CH ₂ CO	<u> </u>	e also	Öberg	g et al. 2010;	; Vastel et al. 2	014; Jiménez-S	Serra et al. 201

Pre-stellar cores: chemical differentiation

The pre-stellar core physical/chemical structure

Caselli et al. 1999, 2002, 2003; Vastel et al. 2006; Keto & Caselli 2008, 2010

Pre-stellar cores: the central 1000 AU with ALMA

Caselli, Pineda et al., in prep.

Water vapor in dark clouds

In cold regions, H₂O is mainly formed on the surface of dust grains.

e.g. Tielens & Hagen 1982; Cuppen & Herbst 2007; Ioppolo et al. 2008, 2010; Miyauchi et al. 2008; Cazaux et al. 2010, 2011; Dulieu et al. 2010; Taquet et al. 2013

Previous attempts

x(H₂O) < 10⁻⁸ (Bergin & Snell 2002; Klotz et al. 2008)

HERSCHEL HIFI

2010 WISH Data

2010 Data

Caselli, Keto, Pagani et al. 2010

2011 WISH Data

Credit: ESA/Herschel/SPIRE

Caselli, Keto, Bergin, Tafalla, Aikawa, Douglas, Pagani Yildiz, van der Tak, Walmsley, Codella, Nisini, Kristensen, van Dishoeck 2012, ApJL

Simplified O-chemistry

see also Schmalzl et al. 2014

KEY PHENOMENA:

★x(H₂O) ~ 10⁻⁹ maintained by FUV
photons produced by
c.r. (total mass of
water vapor: ~0.5
Earth masses; total
mass of water ice:
~2.6 Jupiter masses).

 \bullet n_H ≥ 10⁶ cm⁻³, to explain H₂O emission.

Gravitational
 contraction to see
 blue wing in emission.

LARGE WATER RESERVOIRS AT THE DAWN OF STELLAR BIRTH

The radiative transfer of water

Courtesy of Luca Bizzocchi

The Herschel Space Observatory has:

- 1. detected water vapor in a pre-stellar core for the first time;
- 2. unveiled gravitational infall within the central 1,000 AU;
- measured the total mass of water vapor (~0.5 Earth masses → deduced total mass of water ice ~2.6 Jupiter masses);
- 4. given us insight into the radiative transfer and the chemistry of water in cold gas.

OT2 Herschel data on 2 low-mass PSCs and ...

Caselli, Pagani, Yildiz, Aikawa, Tafalla, et al.

CO(8-7) CO(9-8) CO(10-9) maps to check presence of shocked gas produced by turbulence decay in the process of pre-stellar core formation.

Pon et al., in prep.

The use of full radiative transfer

Quénard, Vastel et al. 2014

A SPECIAL THANK TO:

Eric Keto (CfA) Fabien Daniel (CSIC-INTA) Joe Mottram (Leiden Observatory) Simon Bruderer (MPE) Floris van der Tak (SRON) Michiel Hogerheijde (Leiden Observatory)