

R. LOMBAERT

L. DECIN P. ROYER A. DE KOTER N.L.J. COX E. GONZÁLEZ-ALFONSO **D.NEUFELD** J. DE RIDDER M. AGÚNDEZ J.A.D.L. BLOMMAERT T. KHOURI

M.A.T. GROENEWEGEN

KA HOGSKO

F. KERSCHBAUM

J. CERNICHARO

B. VANDENBUSSCHE

C.WAELKENS

A&A 588, A124 (2016)

LOW-TO-INTERMEDIATE STARS: ASYMPTOTIC GIANT BRANCH

Evolution on the AGB

YOU

ARE

HERE

FORMATION OF STELLAR WIND: MASS LOSS

Höfner 2012

STRUCTURE OF THE STELLAR WIND

 $I R_{\star} \approx 3 \times 10^{13} \text{ cm} \approx 2 \text{ AU}$

HERSCHEL CO AND H₂O EMISSION

(LINE FORMATION REGION)

 $I R_{\star} \approx 3 \times 10^{13} \text{ cm} \approx 2 \text{ AU}$

TWO CHEMICAL TYPES

 $I R_{\star} \approx 3 \times 10^{13} \text{ cm} \approx 2 \text{ AU}$

CARBON STARS SPECIFICALLY

 $I R_{\star} \approx 3 \times 10^{13} \text{ cm} \approx 2 \text{ AU}$

HERSCHEL: H₂O IN INNER WIND OF CW LEO

CHALLENGE FOR ALL PROPOSED FORMATION MECHANISMS

H₂O IN MANY CARBON STARS!

Followed by lots of HIFI H₂O detections:

- I. CW Leo (Neufeld et al. 2010a)
- 2. V Cyg (Neufeld et al. 2010b)
- 3. Widespread occurrence of H_2O in 8 carbon stars (Neufeld et al. 2011)
- 4. H₂O isotopologues in CW Leo (Neufeld et al. 2013)

DEEP-ENVELOPE PENETRATION OF INTERSTELLAR UV

 $I R_{\star} \approx 3 \times 10^{13} \text{ cm} \approx 2 \text{ AU}$

(MECHANISM I)

SHOCK-INDUCED NON-EQUILIBRIUM CHEMISTRY

(MECHANISM II)

 $I R_{\star} \approx 3 \times 10^{13} \text{ cm} \approx 2 \text{ AU}$

CHOOSE NOW!

Camp Interstellar UV: According to: Decin et al. 2010 Agùndez et al. 2010 Camp Shocks: According to: Cherchneff 2011

(Neufeld et al. 2013)

THE PHYSICS OF EVOLVED STARS - NICE, JUNE 2015

HERSCHEL OBSERVATIONS

GTKP: MESS P.I.: M. Groenewegen

Spectral scans

4 Miras

2 SRa variables

0 SRb variables

OT2: P.I.: L. Decin

Line scans focused on H_2O

7 Miras + LL Peg

I SRa variable (?)

4 SRb variables

Total: 18 sources

Approach:

- I. Trend analysis of distance-independent observed line-strength ratios
- 2. Theoretical model grid for qualitative comparison

AFGL 3068 AKA LL PEG

FROM ENIGMA TO JUST ANOTHER CARBON STAR... AS FAR AS H₂O IS CONCERNED

H₂O DEPENDENCE ON MASS LOSS

Assumption: H₂O abundance ~ $I_{H_2O} / I_{CO} ~ (I_{H_2O} / I_{H_2}) \times (I_{H_2} / I_{CO})$ if $\dot{M} ~ I_{CO}$

COMPARISON WITH RADIATIVE-TRANSFER MODELS

Account for effects of dust (radiative pumping), velocity & temperature profile, ...

H₂O IN CARBON STARS: CONSTRAINTS

CONCLUDING...

2.

3.

	Shocks	Interstellar UV
H ₂ O is present in the inner and intermediate wind Confirmed for full sample of 18 carbon stars	•	
H ₂ O abundances ~ 10 ⁻⁶ - 10 ⁻⁴ Depending on wind density	(🖍)	X
Formation mechanism less efficient with increasing wind density	(🖍)	
Correlation breaks down for SRb stars: dependence on pulsation type?	(🖍)	×

IMPLICATIONS AND PROSPECTS

CONCLUDING...

- I. Expand parameter space for chemical models Can we reach higher abundances?
- 2. H₂O important coolant, when abundant Energy balance in carbon-rich AGB winds? Self-consistent H₂O cooling currently does <u>not</u> work!
- 3. Resolve clumpy winds with ALMA We need constraints for the interstellar UV mechanism.
- 4. In-depth RT modeling of individual sources

What about ID versus 3D?

THANK YOU!