Collisional Excitation of Water

Theory and Experiment in Harmony

Alexandre Faure

CNRS, Institut de Planétologie et d'Astrophysique de Grenoble

300 ⁻ - 100

1000

Outline

- Introduction
- Theory
- Comparisons to Experiment
- Isotopologues
- Future issues

INTRODUCTION

Basics

No interconversion by inelastic collisions

Non-LTE excitation

- In the ISM, collisions cannot maintain LTE
- Collisional rates are critical parameters

Water collisions in the ISM

- H₂O-He everywhere (but second-order)
- H₂O-H
- H₂O-e⁻
- H₂O-H₂

J-type shocks diffuse ISM, shocks, PDRs

dense ISM

Historical review (before 2006)

• H₂O-He

- De Jong (1973)
- Green (1980), Palma et al. (1988)
- Maluendes et al. (1992)
- H₂O-H₂
 - Phillips et al. (1996)
 - Dubernet & Grosjean (2002)
 - Grosjean et al. (2003)
- H₂O-electron
 - Xie & Mumma (1992)

THEORY

Theoretical ingredients

PES topology

COMPARISONS TO EXPERIMENT

Testing the PES

- Spectroscopic studies
 - Probe the shape of the potential well
- Collision experiments
 - Probe the short-range (repulsive) part
- Resonances (cold regime)

- Probe the global shape, including long-range

A benchmark system: H₂O-H₂

Elastic cross sections

- Molecular-beam apparatus
- Glory quantum effect

Belpassi et al. JACS (2010)

Bound-states

- High-resolution IR spectroscopy
- Rovibrational states supported by the PES

Ziemkiewicz et al. J Chem Phys (2012) + van der Avoird & Nesbitt J Chem Phys (2011) + Wang & Carrington J Chem Phys (2011) + van der Avoird et al. Chem Phys (2012) + Harada et al. Chem Phys Lett (2014)

Broadening cross sections

- Cryogenic gas apparatus
- *Absolute* metrics of the interaction

+ Wiesenfeld & Faure Phys Rev A (2010)

Inelastic cross sections

- Crossed molecular beams + velocity map imaging
- Probe both attractive and repulsive parts of the PES

Yang et al. J Chem Phys (2010)

« Propensity » rules

- There is no selection rules in collisions
- But transitions with
 ΔJ =0, 1 are favored

H₂O-pH₂

Yang et al. J Chem Phys (2011)

Inelastic cross sections

- Crossed molecular beams + variable crossing angle
- Near-threshold regime

H₂O-electron

Inelastic cross sections

- Electron-impact spectrometer
- Dipole-induced transitions favored

H₂O-He

Inelastic rate coefficients

- Raman spectroscopy in supersonic jets
- Absolute rate coefficients in cm³s⁻¹

Tejeda et al. ApJS (2015)

Summary of experiments

- Current PES are accurate to about 1% (≈ 1 cm⁻¹)
- Inelastic cross sections have a 10-30% accuracy rivaling or exceeding experiment

Scaling relationship ?

- No simple scaling laws between H, He and pH₂
- Specific scattering calculations required

 $0H_2O1_{01} \rightarrow 1_{10} @ 556 GHz$

Daniel et al. MNRAS (2015)

Isotopologues

- Kinematic effects
 - Mass and velocities
- PES effects
 - Monomer geometries
 - Centre of mass
- Can be neglected in $H_2^{17}O$ and $H_2^{18}O$

Wiesenfeld et al. PCCP (2011) Scribano et al. J Chem Phys (2010)

FUTURE ISSUES

Available data

• H₂O-He

- Yang et al. ApJ (2013)
- First 10 levels of oH_2O and pH_2O , T=1-3000 K

• H₂O-H

- Daniel et al. MNRAS (2015)
- First 45 levels of oH_2O and pH_2O , T=5-1500 K

• H₂O-H₂

- Daniel et al. A&A (2011)
- First 45 levels of oH_2O and pH_2O , T=5-1500 K
- HDO/D₂O-H₂
 - Faure et al. MNRAS (2012)
 - First 30 levels of HDO, first 12 levels of D₂O, T=5-300 K
- H₂O/HDO/D₂O-electron
 - Faure et al. MNRAS (2004)
 - First 28 levels of H_2O , HDO and D_2O , T=10-5000 K

Rovibrational excitation

- Current rovibrational data are based on extrapolations (Faure & Josselin 2008)
- Rigid-bender calculations in progress (Stoecklin et al.)

Related oxygen hydrides

- OH + He
 - Kalugina et al. Phys Chem Chem Phys (2015)
- OH + H₂
 - Schewe et al. J Chem Phys (2015)
- OH⁺ + He
 - Gomes-Carrasco et al. ApJ (2014)
- OH⁺ + H
 - Stoecklin et al. JPCA (2015)
 - Bulut et al. JPCA (2015)

- $H_2O^+ + H$
- $H_3O^+ + H_2$
- $H_2O + H_2O$ (for comets)
 - PES from Cencek et al.
 PCCP 2012

Conclusion

« Altogether, the collisional rate coefficients have now reached such high accuracy that they are no longer the limiting factor in the interpretation of the astronomical water data. This conclusion is a testimony to the decade long effort by molecular physicists and quantum chemists to determine them »

van Dishoeck, Herbst, Neufeld Chem Rev (2013)