Water in the diffuse interstellar medium

David Neufeld Johns Hopkins University

Main collaborators on this subject: Paule Sonnentrucker, Mark Wolfire, Nicholas Flagey, Paul Goldsmith, Darek Lis, Maryvonne Gerin

Absorption line observations of diffuse clouds

Absorption line observations of stars – at visible wavelengths – led to the first detections of interstellar molecules in the 1940's:

CH, CH⁺, and CN detected in diffuse molecular clouds (with A_V less than ~ 1 – 2 along the sight-line)

Absorption line observations of diffuse clouds

- Extensive observations of molecules in diffuse clouds have now been performed at millimeter and submillimeter wavelengths
- We can use a very luminous region of massive star formation as a distant background source
- This allows us to search for absorption by gas in foreground material
- A very "clean" experiment that provides robust measurements of molecular column densities

Absorption line observations of diffuse clouds

Water detected by SWAS in foreground diffuse clouds along several sight-lines:

Sgr B2, W49, W51

Neufeld et al. (2000, 2002); Plume et al. (2004)

Neufeld et al. 2000, ApJ

Absorption line observations of diffuse clouds

- Past five years: diffuse cloud observations greatly expanded by Herschel/HIFI and SOFIA/GREAT
- Main focus of the PRISMAS key program (P.I. Maryvonne Gerin)
- Additional data from HEXOS and WISH programs, plus several Open Time programs
- Many small hydride molecules observed in diffuse clouds, several for the first time

Interstellar hydrides observed in diffuse clouds at submillimeter wavelengths

IA	IIA	IIIA	IVA	VA	VIA	VIIA	VIIIA
			CH CH⁺ CH ₂	NH NH ₂ NH ₃	$\begin{array}{c} OH \\ H_2O \\ OH^+ \\ H_2O^+ \\ H_3O^+ \end{array}$	HF	
					$\begin{array}{c} SH\\ SH^+\\ H_2S \end{array}$	HCI HCI ⁺ H ₂ CI ⁺	ArH⁺

Blue entries: first detected in diffuse clouds after 2010, all with Herschel/ HIFI except SH (SOFIA/GREAT) and OH⁺ (APEX)

For references, see Gerin, Neufeld & Goicoechea (2016, ARAA: GNG16)

Outline

- The distribution of water relative to other molecules found in diffuse clouds
- The abundance of water in diffuse clouds
- The abundance of other O-bearing hydrides
- The origin of water in diffuse clouds

Absorption line spectra toward W31C

Principal component analysis

The optical depth spectra, shown by the black histograms on the right, are written as a linear combination of the six principal components shown at left. These six components are mutually orthogonal (uncorrelated) and listed in decreasing order of their contribution. The first two components are sufficient to yield a good fit to the data (red histogram on right).

Principal component analysis

A plot of the first two coefficients, C_{i1} and C_{i2} , for each absorption line shows the similarities and differences graphically.

NOTES

(1) Except for ArH⁺, all points lie close to unit circle in the upper panel , indicating that the first two components account for most of what is observed

→ the correlation coefficient is roughly the cosine of the angle between any two vectors

(2) Except for ArH⁺, the hydride molecular ions are very well-correlated with atomicH, but the neutral hydrides are not

GNG16, adapted from Neufeld et al. 2015, A&A

H₂O and HF are extremely well-correlated

HF is expected to have a very constant abundance relative to H_2 , because HF can be formed directly by the exothermic reaction

$F + H_2 \rightarrow HF + H$

Suggests that the H_2O/H_2 ratio is also fairly constant

Adapted from Sonnentrucker et al. 2015

Two careful analyses of the PRISMAS data on HF and H_2O by Flagey et al. (2013) and Sonnentrucker et al. (2015)

These data provide measurements in ~ 50 diffuse clouds on 12 sight-lines In determining N(H₂O)/N(H₂), the greatest problem is measuring the *denominator*, because H₂ is not directly observable along the same sightlines as H₂O \rightarrow Use CH or HF as a surrogate

(1) Optical/UV observations → Typical CH/H₂ = 3.5 x 10⁻⁸
(2) Submillimeter observations with *Herschel* → HF/CH = 0.4
(3) Early theoretical expectation → HF/H₂ = 3.6 x 10⁻⁸
(accounting for almost all gas-phase F in regions of large H₂ fraction)

NB: (3) is inconsistent with (1) and (2) by a factor 2.5

Two careful analyses of the PRISMAS data on HF and H_2O by Flagey et al. (2013) and Sonnentrucker et al. (2015)

Flagey et al. (2013) found

(1) Typical $N(H_2O) / N(H_2) = 5 \times 10^{-8}$, based on measurements of $N(H_2O) / N(CH)$ and the assumptions that N(HF) / N(CH) = 0.4 and $N(HF) / N(H_2) = 3.6 \times 10^{-8}$

(2) H₂O ortho-to-para ratios are almost always consistent with 3, the value expected in LTE in the high temperature limit

Two careful analyses of the PRISMAS data on HF and H_2O by Flagey et al. (2013) and Sonnentrucker et al. (2015)

Sonnentrucker et al. (2015) found

(1) Direct submillimeter measurements of para-H₂O and HF imply a median N(H₂O)/N(HF) ratio of 1.5, for an assumed OPR of 3. Given the N(HF)/N(H₂) ratio of 3.6 x 10⁻⁸ adopted by Flagey et al., this would yield the same N(H₂O) / N(H₂) ratio of 5 x 10⁻⁸

(2) A reanalysis of F chemistry, which takes account of recent laboratory measurements of the reaction rate for HF formation, reduces the predicted N(HF) / N(H₂) ratio by a factor ~ 2

→ Average N(H₂O) / N(H₂) = 2.4 x 10⁻⁸

 \rightarrow N(H₂O) / N (gas-phase O nuclei) = 4 x 10⁻⁵

Two careful analyses of the PRISMAS data on HF and H_2O by Flagey et al. (2013) and Sonnentrucker et al. (2015)

Sonnentrucker et al. (2015) found

(3) The H₂O/HF ratio shows real variations: may reflect variations in the CR ionization rate

Sonnentrucker et al. 2015, ApJ

Five other O-bearing hydrides have been detected in diffuse clouds

Molecule	Average abundance	Average abundance	Method	Reference for hydride
	relative to H or H ₂	(fraction of gas		column densities
		phase elemental ^a)		
OH	1×10^{-7}	1.6×10^{-4}	UV, submm, cm	Wiesemeyer et al. (2015); Lucas & Liszt (1996)
H ₂ O	2.4×10^{-8}	4×10^{-5}	submm	Flagey et al. (2013)
OH^+	1.2×10^{-8}	4×10^{-5}	UV, submm	Indriolo et al. (2015)
H_2O^+	2×10^{-9}	6.5×10^{-6}	submm	Indriolo et al. (2015)
H_3O^+	2.5×10^{-9}	4×10^{-6}	submm	Lis et al. (2014)

All are trace constituents, accounting together for $\sim 0.025\%$ of gasphase oxygen nuclei. Most of the oxygen is in OI and CO.

OH⁺ and H₂O⁺ have a distribution similar to that of atomic hydrogen H₃O⁺, OH and H₂O have a distribution similar to that of H₂

The origin of water vapor in diffuse clouds

Three formation mechanisms have been considered in the literature

(1) Cosmic-ray driven chemistry H (cr,e) H⁺ (O,H) O⁺ (H₂,H) OH⁺ (H₂,H) H₂O⁺ (H₂,H) H₃O⁺ (e,H) H₂O

(2) Grain surface catalysis
 H and O atoms adsorbed and react on grain surface to make H₂O, which is subsequently desorbed

(3) Warm chemistry (in some fraction of the gas at \overline{T} > 400 K) O (H₂,H) OH (H₂,H) H₂O

The origin of water vapor in diffuse clouds

Sonnentrucker et al. (2015, ApJ, and poster P13)

Observed H₂O/HF ratios can be explained in models that invoke grain surface and cold gas-phase chemistry alone

In clouds with larger H_2O/HF ratios, the CR ionization rate is larger and gas-phase reactions dominate

In clouds with smaller H_2O/HF ratios, the CR ionization rate is smaller and grain surface reactions dominate

Recent calculations with Mark Wolfire

H₂O as diagnostic probe

- H₂O abundance relative to H₂ is only weakly dependent on the physical parameters → a useful "secondary" surrogate for H₂ (see Sonnentrucker et al. poster P13)
- H₂O originates primarily in material of large H₂ fraction. By contrast, OH⁺ and H₂O⁺ (which are destroyed by H₂) originate mainly in material of small H₂ fraction: consistent with observed correlations revealed by PCA
- High precision measurements of H₂O/HF may provide useful information about the cosmic-ray ionization rate

→ values of (CR ionization rate / density) are a factor of several smaller than those inferred from OH⁺ and H₂O⁺ (Densities may be higher and/or CR ionization rates lower in material with a larger molecular fraction)

Summary

- Water vapor is strongly correlated with other hydrides (CH and HF) that trace material of high molecular fraction
- Water vapor is ubiquitous in the diffuse ISM, but is a trace constituent. The median abundance ratio, N(H₂O)/N(H₂), is 2.4 x 10⁻⁸, corresponding to < 0.003% of gas-phase oxygen
- The observed distribution and abundance of water vapor in the diffuse ISM can be accounted for by models that invoke H₂O production via (1) grain surface chemistry and (2) gas-phase reactions initiated by cosmic-rays