

Water fountains from protostars - the signposts of FUV illuminated shocked gas

Agata Karska

Adam Mickiewicz University, Poznan, Poland

(Green+2013)

(van Dishoeck+2011)

Collaboration

E. van Dishoeck M. Kaufman L. Kristensen G. Herczeg J. Mottram J. Lindberg J. Green N. Evans L.Tychoniec +WISH,WILL & **DIGIT** teams

"Water in low-mass protostars: the William Herschel Line Legacy" PI: E. van Dishoeck (Mottram, subm)

Water in low-mass protostars

Water traces 'hot spots' in the outflows and central regions where jet and winds interact with the surrounding medium

Far-IR line emission

booming H₂O 8₁₈-7₀₇ (E_{up}~1000 K)

Herczeg, Karska+12

Detections of CO J_{up} =14-49 and highly excited H₂O as well as [O I] and weak [CII]

Deeply-embedded protostars

Feedback most important during deeply embedded stage, when accretion rate is the largest

Motivation

I.What are the physical conditions of the gas where water is excited?

2. What is the role of water in the gas cooling budget? Evolution Class 0/1 ?

3. Which physical processes are responsible for the water emission?

Protostars with Herschel

WISH: Kristensen+12, Karska+13, prep.

WILL: Mottram, subm.

DIGIT: Green+13

- flux-limited survey of 90 Class 0/l protostars, d < 500 pc - good sampling of L_{bol} - T_{bol}

Far-IR line detections

- CO, H₂O, OH, [O I] detected in > 70% of protostars - very highly-excited lines of CO and H₂O in 30-40 %

Spatial extent of emission

molecular emission generally compact at 10³-10⁴ AU scales
 atomic emission extending along the outflow direction

Link between high-JCO and H₂O

Herczeg+12, Karska+13, Lindberg+14

Kristensen+ in prep., I2, Mottram+I4 see talk by L. Kristensen

H₂O and high-J CO co-spatial but different from [O I] and low-J CO
similarity of the velocity-resolved profiles (HIFI)

Molecular excitation: CO

Goicoechea+12, Herczeg+12, Manoj+13, Karska +13, Green+13, Dionatos+13, Je+15, Lee+15 ...

- Universal CO T_{rot}~ 300 K ('warm component')
- Less frequent 'hot component' with median $T_{rot} \sim 900$ K

Molecular excitation: H₂O & OH

L1157

- Typically I components at H_2O and OH diagrams at ~150 K and ~100 K, but large scatter

- Some show a hot component at H₂O diagrams

Hot water component

- Clear detection in 10 sources: $T_{rot2} \sim 200-500$ K
- Corrected histogram for the warm component shows a median at ~130 K

Hot CO vs. hot H₂O Kristensen+13

- Strong link between the hot H₂O and hot CO

- Respective kinematic component seen in the line profiles at same velocities as hydrides - impact of UV irradiation

Gas physical conditions

Karska+13, see also Neufeld 12

Observations reproduced with densities n ~10⁵ cm⁻³ and T ~300 K, or: lower densities (n~10³⁻⁴ cm⁻³) and much higher T (> 1000 K)
 Excitation of water lines require the higher-density solution

Far-IR line cooling

- calculated using only the lines in the PACS range $L_{FIRL} = L(CO) + L(H_2O) + L(OH) + L[O]$

- large variations in the fractions contributed by different species (no correlation with T_{bol} and L_{bol})

Line emission in Class 0/I

surprisingly similar
 distributions for all
 protostars

very similar
absolute values
(a few 10⁻⁴)

Evolution in cooling

- large spread, but median contributions of CO and H_2O decrease, while [O I] and OH increase

- overall decrease in $L_{FIRL} = L(CO) + L(H_2O) + L(OH) + L[OI]$ from 5.9 10⁻³ to 3.7 10⁻³ L_{bol} from Class 0 to 1 (not shown)

Luminosity ratios of various species

very similar
 values for all
 sources (of the
 order of unity)

useful for
 comparisons with
 the models

Origin of warm gas?

Well-resolved extended emission along the outflow direction --> not an inner envelope, not a disk **Observed spatial scales** not a bow shock at the tip of a jet Lack of very high velocity emission Temperatures well above 100 K not an entrained outflow gas

shocks & UV

Molecular cooling in shocks

Non-dissociative C - shock & J-shock (Flower & Pineau des Forets)

T> 300 K: O + H₂ \longrightarrow OH + H OH + H₂ \longrightarrow H₂O + H

v_{sh} > 15 km/s: molecules released from grains

- molecules can survive the passage of C shock, but not all J shocks

- line cooling dominated by H₂, H₂O and CO

Line ratios vs. shock models - excitation

Protostars in Perseus (22 sources)

Karska+14b

- Line ratios remarkably similar across the sample - Velocities > 20 km s⁻¹, pre-shock densities of ~10⁵ cm⁻³

Line ratios vs. shock models - abundances Karska+14b

$H_2O / CO \qquad H_2O / OH \qquad CO / OH$

- Observed ratios with H₂O much lower than models

- We postulated to use irradiated shock models to decrease the H_2O abundances

FUV irradiated C shocks

- decrease of H₂O preshock abundances at low densities

- increase of the preshocks O available for the post-shock OH and H_2O

Melnick & Kaufman 2015, talk by M. Kaufman

Line ratios vs. shock models

 H_2O/CO H_2O/OH CO/OH

- Observed ratios with H₂O much lower than models

- We postulated to use irradiated shock models to decrease the H_2O abundances

Irradiated shock models

 H_2O/CO H_2O/OH CO/OH

- Irradiated shock models agree with observations for pre-shock log n ~ 4-5 and G_0 ~1-10

Outflow parameters

- total energy loss is a direct measure of mechanical luminosity c.f. Maret, Bergin+09 $\frac{1/2 \ dM/dt \ v_{sh}^2 = (1-f_m) \ 1/f_x \ L_{FIRL}}{1/2 \ dM/dt \ v_{sh}^2 = (1-f_m) \ 1/f_x \ L_{FIRL}}$

, f_m - fraction of shock mechanical energy translated into excitation f_x - fraction of cooling due to CO, H₂O,OH, [O I]

- assuming $(I-f_m) \sim 0.75$ and $f_x \sim 0.25$ and $v_{sh} \sim 15$ km s⁻¹ (G₀=1, logn=5) and $L_{FIRL} = 4.7 \mid 0^{-3} \mid L_{bol}$ (observations)

Mass loss by outflows: $dM/dt \sim 5.2 \ 10^{-7} M_{sun} \ yr^{-1}$

Caution: we may not observe the full extent of the outflow

High-mass protostars

Goicoechea+15 Matuszak+15 Karska+14

mass

see talks by Mottram (LM-HM) and Herpin (cooling)

The same processes responsible for far-IR emission from low- to high-mass star forming regions?

Conclusions

I.Water is ubiquitous in deeply-embeddedprotostars and follows closely the highly-excitedCO lines (physical conditions)

2. Water is one of the key coolants of the gas in Class 0/I protostars

3. Water originates from a hot and dense gas likely associated with the FUV illuminated outflow shocks

