

Water Emission in Outflow Shocks

B. Lefloch IPAG (France)

Thanks

То

M. Benedettini, G. Busquet, S. Cabrit, P. Caselli, E. Caux, C. Codella, C. Ceccarelli, A. Gomez-Ruiz, J. Holdship, I. Jimenez-Serra, A. Gusdorf, B. Nisini, L. Podio, S. Viti, M. Tafalla, M. Vasta, L. Wiesenfeld, and all my colleagues from the CHESS and WISH Teams

The Low-Mass Outflow Phenomenon

Three physical components High-velocity wind Shock **Bipolar outflow cavity**

Specific outflow shock chemistry

 \rightarrow Evidence for grain mantle/core sputtering and dust shattering: CH₃OH/SiO \rightarrow high-temperature gas phase reactions:HCN

ESTEC - B. Lefloch - April 2016

Previous results and questions

Shock Models predict a strong water enrichment in outflow shocks (Neufeld & Kaufman 1996; Flower & Pineau des Forets 2010)

H₂O thermal line emission is a selective tracer of outflows

- ISO: water in warm outflow gas (Liseau 1996; Giannini, 2001)
- **SWAS**, *Odin*: *o*-*H*₂*O* 557 *GHz*
- → First resolved line profiles: high-velocity *wings* (Franklin, 2008; Bjerkeli 2009
- → First estimates of $X(H_2O)$ in outflow/shocks : 10⁻⁷ to 10⁻⁴

Angular resolution: several arcmin \rightarrow only a global view on H₂O properties

Where is H_2O formed in outflows and by which processes: gas phase / dust grains ? Which physical component(s) of the outflow are traced by H_2O ? What is its role in the energy budget ?

The Promise of Herschel

Three assets to study outflow shocks:

Both HIFI and PACS observed H_2O lines probing a wide range of excitation Angular resolution: 40'' - 6'': comparable to ground based telescopes (IRAM, APEX) Spectral resolution down to ~ 1 MHz (HIFI): kinematics of low- and high-excitation gas

Water Emission in Outflows

Also : Bjerkeli et al. (2013), Nisini et al. (2013), Santangelo et al. (2014)

Strong water emission from the embedded protostar and the active shock regions B0-B2 and R0-R2 in the outflow.

H₂O peaks match the H₂ emission peaks (warm gas : 300K) , SiO (?), not with CO 2-1

+ ODIN/SWAS 557 GHz : H_2O from small size, water-rich clumps: $X(H_2O) \sim 1(-4)$

ESTEC - B. Lefloch - April 2016

Water Emission in Outflows

Same for CepE, HH1, HH46-R, BHR71, HH54, L1448-C, L1448, L1157, VLA16293 Bjerkeli et al. (2012), Nisini et al. (2013), Santangelo et al. (2013), Busquet et al. (2014)

Outflow survey

 $I^*[IRAC4]$ (MJy sr⁻¹) = 0.4 $I[H_2O(1670)]$ (K km s⁻¹).

 $\rm H_2O$ and the low-J CO lines trace different gas components Close association between $\rm H_2O$ 557/1669 GHz and warm $\rm H_2$ gas (300-500K) Emission : narrow range excitation conditions

The outflow shock L1157-B1

Prototype for outflow shock studies HIFI/PACS Line survey in CHESS (C. Ceccarelli et al. 2010)

The most complete water line set obtained for a shock 13 transitions : 9 HIFI, 7 PACS 9 ortho/5 para

+ High-J CO, CS, HCN, ... + OH, NH₃, HDO

Complementary data

- IRAM 30m line survey of L1157-B1 : 80 350 GHz
- Sub/Millimeter line emission maps: IRAM 30m, PdBI, CSO
- IRAC Spitzer H₂ maps

Physical Structure of L1157-B1

Double Shock structure

- B1 outflow cavity walls
- the jet impact region against B1 cavity

Cavity associated with previous ejection : B2

ESTEC - B. Lefloch - April 2016

Physical Structure of L1157-B1

Three shock components with specific spectral signatures

Physical conditions are homogeneous: Isothermal, uniform density

Spectral signatures are essentially independent for a wide range of species

Physical Structure of L1157-B1

Jet Impact Shock region

Bright OI emission and CO are consistent with a J-type shock

 $n(H_2)=10^4 \text{ cm}^{-3}$ V_s= 20-30 km/s

Flower & Pineau des Forets (2010)

B1 Outflow cavity

Bright CO emission is consistent with a C-type shock

$$n(H_2) = 10^4 \text{ cm}^{-3}$$

V_s= 20 km/s

Water Emission in L1157-B1

Bowshock

Emission detected over the bowshock Emission peak shifted wrt high-excitation gas: CO (16-15), H_2 1-0 S(1) Two contributions at apex and jet shock ?

HIFI line profiles : Two physical components 1669, 1113, 557 GHz

987, 752 GHz

Comparison H₂O – CO line profiles

 $H_2O 1097 \text{ GHz} / \text{CO 16-15}$ does not vary with velocity No evidence for X(H₂O) increase with velocity

Water Emission in L1157-B1

The Two-Temperature model

1 – Warm, Dense Component

- T=250K, $n(H_2)=2x10^6$ cm⁻³, size= 10", $N(o-H_2O)=2x10^{14}$ cm⁻²
 - → best-fit for $o/p H_2 = 0.5$ (Spitzer: 0.6, Nisini et al. 2010)
 - \rightarrow best-fit for o/p H₂O= 3

Warm Component Emission from the jet impact shock region

Water Emission in L1157-B1

The Two-Temperature model

1 – Warm, Dense Component

- T=250K, $n(H_2)=2x10^6$ cm⁻³, size= 10", $N(o-H_2O)=2x10^{14}$ cm⁻²
 - → best-fit for $o/p H_2 = 0.5$ (Spitzer: 0.6, Nisini et al. 2010)
 - \rightarrow best-fit for o/p H₂O= 3

Warm Component Emission from the jet impact shock region

2 – Hot, Diffuse Component

T= 1000K, $n(H_2)=2x10^4$ cm⁻³, size= 2.5" N(o-H₂O)= 9x10¹⁶ cm⁻²

Higher-T solutions for higher $o/p H_2$ ratio T=1000K, $o/p-H_2=3$ is consistent with Spitzer

This high-T component is not detected in the PACS CO lines

Temperature distribution similar to that observed in H_2 *with Spitzer:* Stratification in the post-shock gas ?

Water Abundance and Line Cooling

	Tk (K)	$n(H_2) (cm^{-3})$	X(H ₂ O)	Size (")	$L(H_2O)$	L(CO)
Warm	250-300	(1-3)(6)	(0.7-2.0)(-6)	10	0.002	0.004
Hot	900-1400	(0.8-2)(4)	(1.2-3.6)(-4)	2.5	0.03	0.01

 $L(OI) = 3x10^{-3} L_0 L(OH) = 4x10^{-4} L_0 L(H_2) \approx 0.03 L_0$ (Nisini et al. 2010)

Warm component

Partly dissociative J-type shock : Low $X(H_2O) \sim 10^{-6}$ L(CO) ~ L(OI) ~ L(H_2O)

Similar results by Tafalla (2013); Bjerkeli et al. (2012)

Hot component

 $\begin{array}{l} \mbox{High } X(H_2O) \sim 10^{-4} : \ \mbox{C-type shock } ? \ \mbox{(Kaufman & Neufeld 1996)} \\ \mbox{All O not locked up in CO is converted to } H_2O \\ \mbox{L}(H_2O) \sim \ \mbox{L}(H_2) > L(CO) \end{array}$

See also L1448 study by Santangelo et al. (2013)

L1157 outflow system

NH₃/H₂O: Shock temperature diagnostics

NH_3/H_2O decreases as a function of velocity

Codella et al. (2010) : Different formation mechanisms : NH₃ is released by grain mantles H₂O water is released by grain mantles + high-T reactions in the warm shocked gas

Viti et al. (2011) : Destruction of NH₃ in the shock

 NH_3 is initially frozen onto dust grains, released in gas phase when passing through the shock. For $T_{kin} > 4000K$,

 $H + NH_3 \rightarrow NH_2 + H_2 (E_{act} = 5000K)$

-5

-10

(X)

 $n(H_2) = 5 \times 10^4 \text{ cm}^{-3}$, $V_s = 40 \text{ km/s}$

CH₃OH

15

16

log z(cm)

17

H₂CO

14

UCL_CHEM + Parametric shock code (Jimenez-Serra 2008)

NH₃/H₂O could help constraining the shock parameters

 10^{3}

 10^{2}

18

T (K)

Deuterated Water

Stark (2004): HDO outflow emission in I16293-2422 Codella et al. (2010): HDO detected in the cavity walls of L1448 outflow

Search for Deuterated isotopologues in L1157-B1 Codella et al. (2012) 0.004 HDCO CH2DOH 0.02 202-101 0.003 0.002 0.01 0.03 CH₂DOH e0 IRAM HDCO IRAM 0.02 414-313 $2_{02} - 1_{01}$ T_{MB} (K) 0.01 0.02 IRAM 0.02 - HDCO IRAM CH2DOH eD IRAM DCN 3-2 $1_{11} - 1_{01}$ 0 -40 -20 0 -40 -20 0 -40 -20 20 20 20 V_{LSR} (km s⁻¹) V_{LSR} (km s⁻¹) V_{LSR} (km s⁻¹)

CH₂DOH, HDCO, DCN, HDCS, NH₂D, **HDO** $1_{11} - 0_{00}$

Shock age : 2000-4000yr → A record of ice mantle formation

Lower deuteration for H_2O and HCN

1.0000

0.1000

0.0100

0.0010

0.0001

D/H ratio

 $H_2O: D/H= (0.4-2)x10^{-3}$

- 1 low-density phase (10^3 cm^{-3}) : H₂O ice formation
- 2 higher-density phase (10⁴ cm⁻³) : H_2CO and CH_3OH ices form

11157-B

H2CO CH3OH

H₂O

NH₃

HCN

Deuteration as seen with the PdBI at 2.5"

Deuterated formaldehyde is associated with shocked gas in the cavity walls and the arch → SPUTTERING

Extended Formaldehyde emission : Tip of bowshock \rightarrow gas phase formation

D-fractionation : 0.04 (arch) to 0.15 (walls) D-fractionation on mantle grains in the arch: ~ 0.11

Fontani et al. (2014)

Conclusions

Herschel has allowed us to probe the structure of molecular shocks: double shock (jet, cavity). Shock models succeed approx. in accounting for their physical properties based on CO SLED.

 $\rm H_2O$ 557/1669 GHz lines trace a warm (300-500K), dense gas component detected in $\rm H_2$ with Spitzer and high-J CO (not low-J): very good correlation morphology and intensity. Low water abundance (X ~ 10⁻⁶) and physical properties are well accounted for by J-type shock components of small size.

Detailed shock studies share similar conclusions :

Modelling of the H₂O emission requires in general a multi-temperature distribution:

A second, compact component of hot (1000K) and less dense gas is required to account for H_2O SLED. This component may be detected (or not) in the high-J CO lines.

It dominates H₂O production in L1157-B1 shock region (X ~ 10^{-4}).

→ The exact physical relation between these components remains to be understood: stratification in the post-shock region ?

 $X(NH_3)/X(H_2O)$ abundance is sensitive to T_{max} in the shock and could be used to constrain the shock parameters.

HDO studies are a useful tool to determine the history of ice mantle formation in the cloud.

Thank You