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C-Shock Profile
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H,+O==>0H+H ice is efficiently

—— sputtered off grains and
H2 + OH > H20 + H added to the gas phase



But something I1s missing...

C-shocks influenced by the environment near

takes a clumpy interstellar medium. The fast J-type shocks provide a strong source of ultraviolet radiation, which
photodissociates the H,O in the cooling (7 < 300 K) gas behind the slow shocks and strongly affects the slow
C-type shock structure by enhancing the fractional ionization. At these high ionization fractions, C-type shocks

break down at speeds ~10—12 km s~ !, while faster flows will produce J-type shocks. Our model favors a preshock
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N(H;0) ~ 4x 1016601 105 cm=3 10 km s!

Most shocked H2O is not at an abundance of 104in
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Alternatively, the [O 1] emission could arise from the same weak

3

shocks that accelerate the bulk of the molecular gas. Future ob-
servations with Herschel, which has better angular and spectral
resolution, may help determine the relationship between the H,O
and [O 1] emissions and other shock tracers in these outflows and
provide a better understanding of the evolution of the H,O abun-
dance in these outflows.




But something Is missing...
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What are the preshock conditions
N the protostellar environment”
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PDR Model: CO/

n=10% cm-3
Go=100
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What are the preshock conditions
N the protostellar environment”

Ay = 0.1:
All oxygen available but
high ionization fraction [
makes shocks
breakdown

1 0.1 1
Hollenbach et al. 2009 Depth into the Cloud in Visual Magnitudes, A,



What are the preshock conditions
N the protostellar environment”

Ay = few:
Oxygen frozen out by
factor of 10. lonization
may not allow shocks

above sputtering speed.
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What are the preshock conditions
N the protostellar environment”

Av = 10:

All oxygen frozen out; low
water without sputtering E
since O is locked in the E

ice.
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Hollenbach et al. 2009 Depth into the Cloud in Visual Magnitudes, A,
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Resulting Spectrum
H-O, O, OH, CI|

Preshock PDR
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Effect of FUV on Shock Length

Coupling Length at A,=1

- Length scale
controlled by
jonization fraction
and ionization
carriers

+ Detalled
calculation using
PDR model for
different Av, Go
and pre-shock
density

- L~1/njo

105 PDR Models



Effect of FUV on Preshock Ogas

Coupling Length at A,=1

* Freeze-out
controlled by Go
(desorption) and n
(sticking)

+ Higher Go can
drive thermal
desorption as well,
so scaling
relations don't tell
everything

- Ointhe gas
ranges from 104 to
106
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HOW much oxygen Is avallable
to make H>O in the gas”

Preshock Gas—Phase Abundances at A,=1
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HOW much oxygen Is avallable
to make H>O in the gas”

Preshock Gas—Phase Abundances at A,=1
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HOW much oxygen Is avallable
to make H>O in the gas”

Preshock Gas—Phase Abundances at A,=1
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Modeling efforts to date

* |dentification of basic process - FUV inherently intertwines
shock physics, pre-shock gas-phase abundances, and shock

chemistry

* Search for cases where fine-tuning of the initial conditions
allowed for low H-O abundances

* Now geared up for big parameter study of FUV'’s effect on O-
chemistry

* O, as atest case (Melnick & Kaufman 2015)

* Emission from H>O and related species (Ol, CO, OH, etc.)



e As FUV field
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Spectra for detailed
comparsions in progress
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UV moves ratios In the rignht
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FUV C-Shocks: Summary

* Higher Go/n: More O and H>O in pre-shock gas

 Higher Go/n: Smaller velocity at which H2O formation
turns on and lower velocity of C-shock breakdown,
perhaps excluding sputtering

* Higher Go/n: Greater relative O and OH emission from
downstream gas

* Preliminary results compare well with observations;
Parameter study underway to compare with WISH and
other outflow samples





