Herschel and ALMA Observations of a Prestellar Core/Outflow Interaction in L1689N

Darek Lis (LERMA/Caltech) A.Wootten, M. Gerin, L. Pagani, E. Roueff, F.F.S. van der Tak, C.Vastel, C.M.Walmsley

Star Formation and Feedback

- Star formation occurs exclusively in the shielded interiors of molecular cloud cores, when gravity overcomes the thermal, magnetic, and turbulent pressure support
- Many stars form in groups or clusters, where objects at different evolutionary stages are often observed simultaneously
- Protostars inject copious amounts of mechanical energy (outflows, shocks) and radiation (UV, X-rays) into their surroundings
- What are the effects of this energy injection on the structure of the surrounding ISM?
- Does it lead to the second generation of star formation?

Tracers of Star Formation:Water

- Frozen in cold gas, abundance enhanced in warm gas—outflows, shocks—kinematics
- Derived water abundances often lower than the canonical value of 10⁻⁴
- Also detected in a prestellar core (FUV photons produced by interactions CR+H₂)

Tracers of Star Formation: Molecular Cloud Deuterated Molecules H_2D^+ , N_2H^+ , N_2D^+ , NH_3 , NH_2D , $ND_2H, ND_3...$ Pre-Stellar Phase Young Star with Outflow + Protoplanetary Disk Main Seguence Star with Planets T_{mb}dv (K km/s) Depletion, complete freeze-out **B68**: q C¹⁸O J=1-0

15 $A_{\rm V}$ (mag) $A_{\rm V}$ (mag)

Importance of the H₂ OPR—detailed models Good observational constrains needed Bergin 2002, 2006; Walmsley 2004; Flower 2006...

The Source: LI689N

Combined Herschel, ALMA ACA, and CSO observations of water emission and deuterated molecular tracers

LI689N: Deuteration

ND₃: Roueff 2005

ND₂H: Lis 2006

- One of the highest-deuteration prestellar cores known (e.g., ND₃)
- Does the outflow interaction have an effect on the physical structure and chemistry of the prestellar core

HIFI: Water and NH₂D

Blueshifted Water Emission

 Two secondary blueshifted water peaks to the NW and SW of the core

NH₂D vs. NH₃

- NH₂D: simple HFS pattern allows direct determination of the line opacity and excitation temperature
- NH₃ spectrum very peculiar, likely affected by the envelope absorption
- Shift between NH_3 and NH_2D

NH_2D Line Velocity and Width

 Clear evidence for a variation in the NH₂D line center velocity and width across the core, correlated with the distribution of the blueshifted water emission

• Quiescent gas in the NE, evidence of interaction with the outflow in the W, SW

ALMA Compact Array

• High-SNR images of the 970 μ m dust continuum emission, N₂D⁺, and ND₃

- A dust source, 1540x840 au in size, detected by the ACA in the southern part of the core: $1.8-3.3\times10^{23}$ cm⁻², $1.1-1.9\times10^{7}$ cm⁻³, 0.2-0.4 M_{\odot}
- A much weaker secondary peak is found in the NE part of the core, associated with the source SMM19 of Pattle (2015)

HFS Fits

Line	v_0	Δv	T_{ex}	$ au_0$
	$(\mathrm{kms^{-1}})$	$(\mathrm{kms^{-1}})$	(K)	
$\rm NH_2D$	3.34	0.38	6.5	2.7
ND_3	3.45	0.40	6.5	0.43
N_2D^+	3.68	0.34	7.9	3.3

- Excitation temperatures consistent with the latest kinetic temperature estimates (Bacmann 2016: 11–16 K; Pagani 2016: 8–16 K)
 - The ~0.4 kms⁻¹ line width corresponds to H₂ thermal line width at 7 K; does not increase with radius
 - Line broadening mainly nonthermal, turbulent motions dominant even in the quiescent part of the core
- Different from typical prestellar cores in Taurus and possibly related to the interaction with the outflow

ACA: Outflow Tracers

- Lines of SO and methanol observed with the ACA; extended emission filtered out, requires total power data
- Emission associated with the NW and SW water peaks
- No emission detected toward the prestellar core

Single-Dish Dust Continuum

Strong single-dish continuum emission in the N/NE part of the core without ACA counterpart—likely filtered out by the interferometer

SCUBA

Distribution of H_2D^+ emission (Pagani 2016) very different from other tracers

How Unique is L1689N?

• LI689N is the best studied, but not the only source of this type

Summary

- The outflow driven by IRAS 16293, as traced by the highvelocity water emission, wraps around and avoids the prestellar core, affecting the kinematics of the dense gas
- Observed changes in the line center velocity and width provide clear evidence of interaction between the prestellar core and the blue lobe of the outflow
- The shock associated with the outflow might have already propagated through the NE part of the core (characteristic timescale: 10 kms⁻¹, 1000 yr \rightarrow 2100 au)
- This shock compressed, dense gas, blueshifted with respect to the systemic velocity of the cloud is characterized by extended emission, which is largely resolved out by the interferometer

Summary

- The N₂D⁺ emission observed with the ACA extends south from the single dish NH₂D peak
- ND₃ emission shows a similar morphology, with a small spatial offset
- A 970 μ m dust continuum source, with a size of 1100 au and an H₂ mass of 0.2–0.4 M_☉, is detected with the ACA, 5" to the south of the N₂D⁺ and ND₃ peaks
- None of the tracers studied here is correlated with the distribution of the H₂D⁺ emission in the region (chemical effect—transformed completely into D₂H⁺?)

Way Forward

- High-angular resolution ALMA data provide key information—chemical differentiation, density structure
- Next step in the analysis: merging of the 12-m, ACA and TP data to increase the spatial dynamical range
- ACA observations of NH₂D and ND₂H need to be completed

MNRAS 444, 2544-2554 (2014)

doi:10.1093/mnras/stu1670

Collisional excitation of singly deuterated ammonia NH_2D by H_2

F. Daniel,^{1*} A. Faure,¹ L. Wiesenfeld,¹ E. Roueff,² D. C. Lis^{3,4} and P. Hily-Blant¹

MNRAS 457, 1535-1549 (2016)

doi:10.1093/mnras/stw084

Collisional excitation of doubly and triply deuterated ammonia ND_2H and ND_3 by H_2

F. Daniel,¹* C. Rist,¹ A. Faure,¹* E. Roueff,² M. Gérin,³ D. C. Lis,^{4,5} P. Hily-Blant,¹ A. Bacmann¹ and L. Wiesenfeld¹

- Detailed radiative transfer modeling: collisional rates with H₂ now available for the ammonia isotopologues
- Spherically symmetric models clearly an approximation; 3D RT needed