Water across the star formation stages

RCW120 Herschel A. Zavagno

Ewine F. van Dishoeck and WISH team Leiden Observatory/MPE

www.strw.leidenuniv.nl/WISH ESTEC Water Symposium, April 13, 2016

Water questions

- Where and how is water formed in space? Paola Caselli
- Which physical components does water trace?
 - Collapsing envelope, outflows, shocks, ... Lars Kristensen, Agata Karska
 - Cooling budget, abundances
- What is the water 'trail' from clouds to disks to planets?
 Joe Mottram
 Joe Mottram
 Michiel Hogerheijde,

Ilse Cleeves

vD, Bergin, Lis & Lunine 2014, PPVI

Water In Star-forming regions with Herschel The WISH team

Leiden, April 2010

425 hr guaranteed time program + OT 74 refereed papers

Summary in van Dishoeck et al. 2011, PASP Bergin & van Dishoeck 2012, van Dishoeck et al. 2013, Chem. Rev., 2014, PPVI

From clouds to disks and comets

B. Saxton NRAO

Formation of water and O₂ on dust grains

Movie posted at www.strw.leidenuniv.nl/WISH

Based on laboratory experiments Ioppolo, Cuppen, Linnartz et al. 2010 Paris, Japanese groups

Ices are abundant and common!

Ices can contain significant fraction of heavy elements (but perhaps not all oxygen) Simultaneous analysis of water gas and ice in a number of sources: Schmalzl et al. 2014

Water distribution in dense clouds

Caselli et al. 2012 Schmalzl et al. 2014

$n=2.10^4 - 5.10^6$ cm⁻³, T=10 K Layer of water gas where ice is photodesorbed

Water in low-mass protostars

Broad: outflow dominates, even for H₂¹⁸O

Kristensen, Visser et al. 2010, 2012

Protostars: water abundance profiles

NGC 1333 IRAS4A

H_2O chemistry routes and link with O_2 Low T High T H_3^+ ()OH⁺ H_2 H_2 0 OH \mathbf{O}_2 H_2O^+ H_2 H_2 H_2O e H_3O^+ Ice **O:gr** $H_2O:gr$ van Dishoeck, Herbst & Neufeld O₂:gr 2013, Chem. Reviews

Lack of O₂ in protostellar envelopes

Very deep O₂ upper limit

Yildiz et al. 2013 HOP program (PI P. Goldsmith)

Cold protostellar envelope

Radius (AU)

Amount of O_2 entering the disk is low, gas or ice

Abundant cometary O₂ mystery

67 P/C-G ROSINA

Interstellar O₂ ice models

Taquet et al. 2016 Walsh et al. 2015

Talk Vianney Taquet

- **Problem: O₂ readily transformed by H to H₂O in ice**
- Only models with low H/O ratio (high density) and relatively warm conditions (*T*~20-30 K) can reproduce high observed O₂/H₂O ice ratio

Follow water trail from cores to disk

Visser et al. 2009 Herbst & vD 2009

Zooming in with interferometers: Hot water in the inner envelope

Jørgensen & vD 2010a Persson et al. 2012, 2013 Hot water detected, but at low abundances

Hot water with ALMA

IRAS16293-2422 protobinary

- Hot water detection at both sources
- Source size ~25 AU (orbit Uranus)
- Not all oxygen is in hot water (seen both for low and high mass protostars)

Band 9 692 GHz data

2D Disk formation

6

Accretion onto 2D disk fundamentally different from 1D
More material enters disk far from star, weak accretion shock

Chemistry and disk formation

Harsono et al. 2014, using Z. Li et al. 2011 models

Infalling parcels experience different T, n, UV en route to disk

Visser et al. 2011, Drozdovskaya et al. 2014

History of water in young disk

End of accretion phase

Visser et al. 2011 Furuya et al. 2016

- Some water is preserved in tact, some water has been processed
- Bulk of water enters disk as ice

Embedded disks with (episodic) accretion heating

Harsono et al. 2015

 H_2O snowline moves out from 3 to 30 AU for dM/dt=10^-4 M_{sun} /yr

Variable accretion rate

Vorobyov & Basu 2015

Midplane snowline (100-160 K)

The chemistry of water in seisks

120 gas H20 ice 77

0.1 AU

Sublimation in inner disk (<3 AU)

H20es Haction H20ice

Snowline

H20 825 H20 ice

Freeze out in outer H2Ogas fraction xH2Qice H2Ogas H2Oice 77 III. Oice Core disk (> 3 AU)

Equilibrium between photodesorption and dissociation in outer disk (Dominik et al. 2005): H₂O_{gas} ~fraction×H₂O_{ice}

Von gast H2Oice

H2Ogas fraction × H2Oice

Hogerheijde et al. 2011

Cold water in disks

p-H₂O 1₁₁-0₀₀ 1113 GHz

o-H₂O 1₁₀-1₀₁ 557 GHz

Hogerheijde et al. 2011, Science

Bergin et al. 2010 Du et al. 2015 Cleeves et al. 2015

Water lines weaker than expected \rightarrow water sequestered in large bodies early on

Talks Hogerheijde, Cleeves

Dust traps in disks: formation of large bodies

ALMA mm continuum images disks at few Myr

vD et al. 2015

Data from van der Marel et al. 2013, 2015 Perez et al. 2014, , Casassus, Fukugawa et al. 2013 Carpenter, Zhang et al. 2014

Dust traps help to overcome radial drift problem and fragmentation barrier
 → Planetesimal/'Comet' factories

From icy grains to planetesimals to embryos to planets

Grain, rocks < meters

Planetesimals kilometers This may happen fast, even in the embedded stage; assisted by dust traps

Water ice accelerates coagulation

Planetary embryos Lunar (1 AU)-to-Mars (2 AU) sized

Where and how is water formed in space?

- Mostly on grains, some in hot gas in shocks
- Hot water abundance lower than expected (TBC)
- Constraints also from (lack of) O₂

What is the water 'trail' from clouds to planets?

- Water enters disk mostly as ice
 - Some of it processed, some not
 - Disk formation stage uncertain; episodic accretion
- Water is sequestered in large bodies early on

