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Importance of Molecular oxygen

Importance of Molecular Oxygen:

- Dominant component of Earth’s atmosphere (21 % by volume)
- Byproduct of photo-synthesis — Potential marker for biological activity
- O is the third most abundant element — O2 potentially abundant in the ISM

- O is a key molecule for the water chemical network



O2: an elusive interstellar molecule

Zero electric dipole moment — difficult to detect Oz in the cold ISM

Only two detections in dark clouds: No detection toward protostars:
Orion and p Oph A strong upper limit in NGC1333-IRAS4A

(Goldsmith et al. 2&11 Liseau et al. 2012) X(02) < 6 X 109 (Yildiz et al. 2013)
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Detection of O; in the comet 67P

First detection of molecular oxygen in a comet by Rosetta:

- High resolution of the ROSINA-DFMS distinction of O; from other species of

same mass 32

- X(02) / X(H20) = 3.8 £+ 0.9 %
— forth most abundant molecule

+ Re-analysis of the Giotto data
toward 1P/Halley results in a similar

abundance of 3.7 % / H,0 !
(Rubin et al. 2015)
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Abundant O; trapped into water ice matrix

O is trapped into a likely pristine water ice matrix

Strong correlation of Oz and H20 suggests similar spatial origin and mechanisms
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The 02/H20 abundance ratio remains roughly constant over time (3.8 + 0.9 % / H20)
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— 02 was likely already present in the ice mantle prior to comet formation



Interstellar chemistry of O

O: is involved in the chemical network forming interstellar (icy) water

0. formation and survival in interstellar ices depend on:
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Objectives of this work

Give an explanation of the observations of 67P/C-G by Rosetta/ROSINA:
1) Primordial formation of Oz prior to comet formation

2) High abundance of 3.8 % of Oz relative to water but low abundance of the
chemically related species HO2, H202, and O3 (lower than 6 x 104 / Oy)

3) Strong correlation between O and H;0 signals but weak correlation
between N2, CO and H:0 signals

Exploration of three different scenarios:

1) Oz formation anc
2) O, formation anc

3) Oz formation and

surviva
surviva
surviva

| in molecular clouds
| during protoplanetary disk formation

| within protoplanetary disks

— Two multi-phase (bulk, surface, gas) astrochemical models are used to
study the cold and warm gas-grain chemistries
(Taquet et al. 2014, Furuya et al. 2015)



02 formation in dark clouds ?
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— Abundances in interstellar ices highly depend on physical conditions



02 formation in dark clouds ?
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Chemical properties in ices

Physical conditions needed to reproduce the O; abundance seen in 67P
are consistent with those of p Oph A (nu = 106 cm3; Tqust = 21 K):

- Low X(03) and X(HO2) in 67P reproduced with Ea(02+0) ~ Ea(O2+H) ~ 300 K
— consistent with Monte-Carlo models by Lamberts et al. (2013)
(but H20; still overproduced by a factor of 10)

—

- 02 is trapped into the inner part of _
the ices, unlike CO (and N2) which are s
mostly present at the surface .
— Explanation of the correlation §

between O; and H20 signals seen in 67P, 2 el i
and anticorrelation for CO and N; E
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O, formation during the disk formation ?

Multi-phase astrochemical model applied to a 2D semi-analytical model
of core contraction (Visser et al. 2009)
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- Efficient formation of Oz vapour, but no production of O; ice into water matrix
- 02 ice formed in ISM can survive during its journey to the disk
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O, formation in protoplanetary disks ?

ML

Fractional abundance in each

Can O; be formed and trapped into water ice in the solar nebula ?
— Gas phase formation of Oz is only eff1c1ent in the upper layers of the disk
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Can Oz be formed during luminosity outbursts and trapped with water
during the cooling ?
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- Luminosity outbursts are too short
to produce Oz in quantities observed in

| comets

- CO and O are trapped together
| during the cooling
| = cannot explain the correlation of O;

and non-correlation of CO/N; with
water
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Conclusions
High abundance of O: trapped into water ice observed in 67P by
Rosetta/ROSINA can be explained by:
- an efficient formation in dense and lukewarm molecular clouds
- a survival of the 02-H20 ice mixture in the solar nebula

— consistent with some properties of our Solar System, suggesting that
it was born in a dense cluster of stars (see Adams 2010)
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Conclusions

High abundance of O: trapped into water ice observed in 67P by
Rosetta/ROSINA can be explained by:
- an efficient formation in dense and lukewarm molecular clouds

- a survival of the 02-H20 ice mixture in the solar nebula

— consistent with some properties of our Solar System, suggesting that
it was born in a dense cluster of stars (see Adams 2010)

Thank you !

14



