On the origin of molecular oxygen in comets

Vianney Taquet, Catherine Walsh, Kenji Furuya, Ewine van Dishoeck Leiden Observatory, Leiden University

Sterrewacht Leiden

Water in the Universe, 13/04/2016, ESTEC

Importance of Molecular oxygen

Importance of Molecular Oxygen:

- Dominant component of Earth's atmosphere (21 % by volume)
- Byproduct of photo-synthesis -> Potential marker for biological activity
- O is the third most abundant element \rightarrow O₂ potentially abundant in the ISM
- O₂ is a key molecule for the water chemical network

O₂: an elusive interstellar molecule

Zero electric dipole moment \rightarrow difficult to detect O₂ in the cold ISM

No detection toward protostars: strong upper limit in NGC1333-IRAS4A X(O₂) < 6 x 10⁻⁹ (Yildiz et al. 2013)

+ No clear detection in comets either through remote or *in-situ* observations

 $[\]rightarrow$ X(O₂)_{obs} << X(O₂)_{mod}

Detection of O₂ in the comet 67P

First detection of molecular oxygen in a comet by Rosetta:

- High resolution of the ROSINA-DFMS distinction of O₂ from other species of same mass 32

1 August 2014 (pre-encounter) O₂ 18 June (after thruster firing) $- X(O_2) / X(H_2O) = 3.8 \pm 0.9 \%$ 30 km orbit, 11 September 10⁰ \rightarrow forth most abundant molecule 20 km orbit, 1 October 10 km orbit, 22 October N¹⁸O CH₃OH 10-1 + Re-analysis of the Giotto data S Intensity (arbitrary units) H¹⁵NO toward 1P/Halley results in a similar abundance of 3.7 % / H₂O ! H₂NO 10-2 (Rubin et al. 2015) N_2H_4 10⁻³ 10-4

Bieler et al. (2015)

31.94

31.96

31.98

32.02

32.00

m/z (Da/e)

32.04

32.06

Abundant O₂ trapped into water ice matrix

O2 is trapped into a likely pristine water ice matrix

Strong correlation of O₂ and H₂O suggests similar spatial origin and mechanisms

The O_2/H_2O abundance ratio remains roughly constant over time (3.8 ± 0.9 % / H_2O)

 \rightarrow O₂ was likely already present in the ice mantle prior to comet formation₅

Interstellar chemistry of O₂

O₂ is involved in the chemical network forming interstellar (icy) water

- O_2 formation and survival in interstellar ices depend on:
- 1) Gas phase abundance of H and O atoms
- 2) Mobility of O atoms
- 3) Activation barriers of key reactions

O₂ production should be accompanied by O_3 , HO_2 and H₂O₂ but ROSINA measured low abundances in 67P: $- X(HO_2) \sim X(H_2O_2) = 6 \ 10^{-4} \ / \ O_2$

- $X(O_3) < 3 \ 10^{-5} / O_2$

Objectives of this work

Give an explanation of the observations of 67P/C-G by Rosetta/ROSINA:

- 1) Primordial formation of O₂ prior to comet formation
- 2) High abundance of 3.8 % of O₂ relative to water but low abundance of the chemically related species HO₂, H₂O₂, and O₃ (lower than 6 x 10⁻⁴ / O₂)
- 3) Strong correlation between O_2 and H_2O signals but weak correlation between N_2 , CO and H_2O signals

Exploration of three different scenarios:

- 1) O₂ formation and survival in molecular clouds
- 2) O₂ formation and survival during protoplanetary disk formation
- 3) O₂ formation and survival within protoplanetary disks

→ Two multi-phase (bulk, surface, gas) astrochemical models are used to study the cold and warm gas-grain chemistries (Taquet et al. 2014, Furuya et al. 2015)

O₂ formation in dark clouds ?

Multi-phase gas-grain model applied to a parameter approach via a grid of models:

Domonactor	Dance of eveloped values
Parameter	Range of explored values
	Physical conditions explored in the model grids
Total density (cm^{-3})	$10^3 - 10^4 - 10^5 - 10^6$
Temperature (K)	10 - 15 - 20 - 25 - 30
ζ (s ⁻¹)	10^{-18} - 3 × 10 ⁻¹⁸ - 10 ⁻¹⁷ - 3 × 10 ⁻¹⁷ - 10 ⁻¹⁶
$A_{\rm V}$ (mag)	2 -4 - 6 - 8 - 10

→ Abundances in interstellar ices highly depend on physical conditions

O₂ formation in dark clouds ?

Chemical properties in ices

Physical conditions needed to reproduce the O₂ abundance seen in 67P are consistent with those of ρ Oph A (n_H = 10⁶ cm⁻³; T_{dust} = 21 K):

- Low X(O₃) and X(HO₂) in 67P reproduced with $E_a(O_2+O) \sim E_a(O_2+H) \sim 300 \text{ K}$ \rightarrow consistent with Monte-Carlo models by Lamberts et al. (2013) (but H₂O₂ still overproduced by a factor of 10)

- O_2 is trapped into the inner part of the ices, unlike CO (and N_2) which are mostly present at the surface

→ Explanation of the correlation between O_2 and H_2O signals seen in 67P, and anticorrelation for CO and N_2

O₂ formation during the disk formation ?

Multi-phase astrochemical model applied to a 2D semi-analytical model of core contraction (Visser et al. 2009)

Efficient formation of O₂ vapour, but no production of O₂ ice into water matrix
O₂ ice formed in ISM can survive during its journey to the disk

O2 formation in protoplanetary disks ?

Can O_2 be formed and trapped into water ice in the solar nebula ? \rightarrow Gas phase formation of O_2 is only efficient in the upper layers of the disk

Can O_2 be formed during luminosity outbursts and trapped with water during the cooling ?

High abundance of O₂ trapped into water ice observed in 67P by Rosetta/ROSINA can be explained by:

- an efficient formation in dense and lukewarm molecular clouds
- a survival of the O_2 - H_2O ice mixture in the solar nebula

 \rightarrow consistent with some properties of our Solar System, suggesting that it was **born in a dense cluster of stars** (see Adams 2010)

High abundance of O₂ trapped into water ice observed in 67P by Rosetta/ROSINA can be explained by:

- an efficient formation in dense and lukewarm molecular clouds
- a survival of the O_2 - H_2O ice mixture in the solar nebula
- \rightarrow consistent with some properties of our Solar System, suggesting that it was **born in a dense cluster of stars** (see Adams 2010)

Thank you !