Exploring the Physical Conditions and Structure of Massive Protostars through Spectroscopic Observations of H₂O in the Infrared

<u>Nick Indriolo¹</u>, David Neufeld², Curtis DeWitt³, Matt Richter³, Adwin Boogert⁴, & Bill Vacca⁴

1 – University of Michigan
 2 – Johns Hopkins University

3 – UC Davis 4 – USRA/SOFIA

April 13, 2016

Water in the Universe: from Clouds to Oceans

Massive Protostars

- Luminous central objects (10⁴ L_{sun})
- Deeply embedded within gaseous envelope
- High temperature chemistry
- Multiple kinematic components (envelope, disk, torus, jet, wind, outflow, infall)
- Large scale molecular outflows

Chemical Models

Simple models predict roughly half of the oxygen in CO and half in H_2O in the inner envelope. H_2O ice is abundant in outer envelope.

NIR Images

Not exactly spherically symmetric, eh?

Water in the Universe: from Clouds to Oceans

Water in Massive Protostars: ISO

- v₂ bending mode seen in absorption toward about 10 objects
- At R~1400 lines are blended and full band fit simultaneously
- No kinematic information

Water in Massive Protostars: ISO

Fable 2. Model	parameters	for the v_2	band o	of gas-j	phase	H ₂ O ^a	a .
----------------	------------	---------------	--------	----------	-------	-------------------------------	-----

Source	T _{ex} (H ₂ O) K	$N({\rm H_2O})$ $10^{18} {\rm cm}^{-2}$	$N({\rm H_2^{hot}})^{\rm b}$ $10^{22}{\rm cm}^{-2}$	x(H ₂ O) ^e 10 ⁻⁵
AFGL 2591	450^{+250}_{-150}	3.5 ± 1.5	6.0	5.8
AFGL 2136	500^{+250}_{-150}	1.5 ± 0.6	7.5	2.0
AFGL 4176	400^{+250}_{-250}	1.5 ± 0.7	4.0	3.8
MonR2 IRS3	250^{+200}_{-100}	0.5 ± 0.2	2.2 ^d	2.3
NGC 7538 IRS1	500 ^e	< 0.5	4.1	< 1.2
NGC 7538 IRS9	300 ^f	< 0.6	0.1	< 60
NGC 2024 IRS2	45 ^g	< 0.3	_	_
AFGL 2059	500^{+300}_{-300}	0.6 ± 0.3	2	3
NGC 3576	500^{+250}_{-250}	0.9 ± 0.3	4	2.3
S 140 IRS1	390 ^h	< 0.3	2.2	< 1.4
W 33 A	120 ^h	< 0.8	6.9	< 1.2
W 3 IRS5	400^{+200}_{-150}	0.3 ± 0.1	6.2	0.5

Boonman & van Dishoeck 2003, A&A, 403, 1003

April 13, 2016

Water in the Universe: from Clouds to Oceans

Unanswered Questions

- At what velocity does the absorption arise?
- Are the line profiles complex with multiple absorption/emission components?
- Do line profiles change with energy?
 Requires high spectral resolution
- CRIRES/VLT (2-5 μm)
- EXES/SOFIA (6-28 μm)
- TEXES/Gemini (5-25 µm)

Water Vibrational Bands

- v₁: symmetric stretch
 - 2.7 µm
- v₂: bend
 - 6.1 µm
- v₃: asymmetric stretch
 - 2.7 μm

AFGL 2591 with SOFIA/EXES

- Narrow slit placed on central object
- Observed for about 20 min
- Vega observed in earlier flight leg for use as telluric standard star

EXES Spectrum of AFGL 2591

Absorption Line Fitting

$$I = I_0 \left[1 - f_c \left[1 - \exp\left(-\tau_0 \exp\left(-\frac{\left(v - v_{\text{LSR}}\right)^2}{2\sigma_v^2} \right) \right) \right] \right]$$

- Gaussian in optical depth
- Allows for fractional coverage of source by absorbing gas, f_c

AFGL 2591 Rotation Diagram

April 13, 2016

Water in the Universe: from Clouds to Oceans

HIFI Observations

Ground state with HIFI and EXES

- Rotational transition at 1113 GHz observed with HIFI (19" beam)
- Ro-vibrational transition at 6.1 µm observed with EXES

Ground state with HIFI and EXES

- Rotational transition at 1113 GHz observed with HIFI (19" beam)
- Ro-vibrational transition at 6.1 µm observed with EXES
- Vibrationally excited transition blended with ground state line

Apertures on AFGL 2591

- EXES slit in blue
- HIFI beam in red

Comparison of Analyses

Instrument	H ₂ O Column Density (cm ⁻²)	Temperature (K)	Reference
ISO-SWS	(3.5±1.5)×10 ¹⁸	450±200	Boonman & van Dishoeck 2003
Herschel PACS	~6×10 ¹⁴	160±130	Karska et al. 2014
Herschel HIFI	~4×10 ¹³	70—90	Choi et al. 2015
SOFIA EXES	(1.3±0.3)×10 ¹⁹	640±80	Indriolo et al. 2015

- IR observations give both larger column densities and temperatures
- Herschel observations primarily probe transitions out of relatively low-energy states
- *N*(CO)=7×10¹⁸ cm⁻² (Mitchell et al. 1989, ApJ, 341, 1020)

AFGL 2136 with VLT/CRIRES

- Ground based observations focus on transitions out of higher energy levels
- Narrow 0.2 arcsec slit oriented to avoid diffuse K emission

Water in AFGL 2136

April 13, 2016

Water in the Universe: from Clouds to Oceans

20

AFGL 2136 Line Profiles

AFGL 2136 Rotation Diagram

22

Comparison of Analyses

Instrument	H ₂ O Column Density (cm ⁻²)	Temperature (K)	Reference
ISO-SWS	(1.5±0.6)×10 ¹⁸	500±200	Boonman & van Dishoeck 2003
VLT CRIRES	(1.0±0.1)×10 ¹⁹	506±25	Indriolo et al. 2013

- Requires high density $n > 10^9$ cm⁻³
- N(CO)=2×10¹⁹ cm⁻² (Mitchell et al. 1990, ApJ, 363, 554)

Summary

- H₂O IR absorption in massive protostars arises in hot, dense gas close to the central object
- H₂O/CO is close to 1, supporting model where oxygen is driven into water
- IR absorption and THz emission studies of H₂O are providing complementary data

AFGL 4176: Analysis in Progress

AFGL 4176: Analysis in Progress

April 13, 2016

Water in the Universe: from Clouds to Oceans

26

AFGL 4176: Analysis in Progress

Future Work

- In March 2016 SOFIA/EXES observations of AFGL 2136, W3 IRS5, NGC 7538 IRS 1, Mon R2 IRS 3, and AFGL 2591 at three spectral settings near 6 µm were made
- Compare sources at 2.5 µm, 6 µm, and 10-13 µm to check for consistency in derived results